High-accuracy Hall-based sensors for high magnetic field applications

Vincent Mosser,

Itron Technology Center,

92190 Meudon, France

Itrón

Rémi Boucher,

CAYLAR,

91140 Villebon,

France

Enrique Minaya

CNRS – Institut de Physique Nucléaire Orsay, 91404 Orsay, France

INSTITUT DE PHYSIQUE NUCLÉAIRE

ORSAY

Depuis 80 ans, nos connaissance

IMMW21 Grenoble, 24-28 June 2019

- The Hall effect
- Parasitic effects in Hall measurements
- 2D Quantum Well Hall Sensors vs 3D sensors
- QWHS for micromagnetometry Applications and results
- The Spinning Current Modulation Technique (SCMT)
- Results at high magnetic field (0 to 7 T)
- Conclusion

The Hall effect -1-

Hall effect in a planar device

- Lorentz force acting on the moving electrons in the channel:
 - \rightarrow transverse electric field $\vec{F} = e\vec{v} \cdot \vec{B}$
- Basic classical Drude-like model:

$$\rightarrow \text{ Hall voltage} \qquad V_H = K_H I B_{\wedge} = \frac{I B_{\wedge}}{e n_S}$$

 $n_{\rm s}$: sheet electron density

IMMW21, June 2019, Grenoble, V. Mosser et al.

 $V_{out} = K_H I B_{\wedge} + \text{ parasitic terms}$

 $K_{H} = G_{H}(\mu(T)B) \times \frac{r_{H}(T,B)}{en_{s}}$

The Hall effect -1-

Hall effect in a planar device

- Lorentz force acting on the moving electrons in the channel:
 - $\vec{F} = e\vec{v} \cdot \vec{B}$ transverse electric field \rightarrow
- Basic classical Drude-like model:
 - $V_H = K_H I B_{\wedge} = \frac{I B_{\wedge}}{e n_s}$ \rightarrow Hall voltage

Unwanted parasitic effects

1. The Hall sensitivity may not be a constant

2. Additive parasitic terms

in the output signal V_{out}

Geometric factor G_H : Can be fixed with adequate probe layout Under certain conditions $G_{H} = 1$

Hall scattering factor r_{μ} Microscopic effects: intrinsic NL Depends on material and sensor structure, $r_{H} = 1$ in degenerate material

$n_{\rm s}$: sheet electron density

cf. R. Popovic's book,

"Hall Effect Devices"

Sheet electron density $n_{\rm S}$

How to keep it constant?

Parasitic terms in the output signal V_{out}

- Offset
- Piezoresistance effect
- Non-linearity vs B
- Cross-sensitivity to in-plane B_{//} (PHE = Planar Hall Effect)
- Thermal and temporal drift of offset
- Thermal and temporal drift of sensitivity
- Noise

Dynamic cancelation of parasitic terms

- Some of these effects can be canceled out by various techniques, the most powerful is the Spinning Current Modulation Technique (SCMT)
- Again, *depending on the type of material considered*, SCMT might be more or less powerful in canceling the parasitic effects

 Selected material
 • 2DEG: combines the benefit of

 Quantum Well Hall Sensors (QWHS)
 a degenerate semiconductor

 AIGaAs/InGaAs/GaAs
 • together with a low electron density n_s

 • Available from industrial III-V foundries

Their magnitude strongly depends on material and sensor structure

Different types of Hall plates -1-

Standard 3D Hall sensor (GaAs, InAs, InGaAs, Si)

Pinch-off effect (as in MOS transistors)

 $n_{S}(y)$ depends on I_{bias} and T

- K_H = 1/en_s @ y=L/2
- Not homogenous: issue for "spinning current" modulation
- Also: larger thermal drift
- + carrier freeze-out at low T in Si

Quantum Well Hall Sensor (Heterostructure based on GaAs, InP,...)

No pinch-off: $n_{\rm S}(y) = n_{\rm S0}$ constant vs I_{bias} and y

- Very homogenous electron density
- Excellent temporal stability
- Very weak K_H thermal drift
 S_T≈ -100 ppm/°C

Itron

Materials characteristics

1. Silicon based Hall sensors

Various galvanomagnetic effects:

Active layer = n-type SI on top of bulk p-type Si

- Magnetoresistance, non-linearity, planar Hall effect (PHE), piezoresistance
- Suited for integration with CMOS electronics Behavior of IC at high field ?

Suited for monolithic three-axis magnetometers +++

Materials Bandgap **Mobility** (cm^2/Vs) (eV) InSb or InAs based sensors 2. Active layer = μm thick 1.12 ** 1400 * Degenerate semiconductor highly doped n-type layer Si Actual mobility much lower than for undoped material 77000 * InSb 0.17 Low sensitivity, need for a large biasing 40000 * 0.35 InAs current (10-100 mA) GaAs 1.42 8600 * Industrial / small batch $In_{0.2}Ga_{0.8}As$ 1.3 7000 (*) For undoped material Active layer = 10 nm thick QW **Quantum Well Hall Sensors** 3. (**) Indirect bandgap in a III-V heterostructure, + Std RT mobility 7000 cm²/Vs Remote "delta"-doping

- Biasing current 0.2–0.5 mA typ.
- Requires elimination of backgating phenomenon
- Industrial pHEMT technology available from III-V foundry on GaAs substrate

QWHS for current sensing and high precision magnetometry

Pseudomorphic heterostructure (AlGaAs/InGaAs/GaAs system)

- Buried 2DEG (2D Electron Gas)
- Designed for precision current sensing 4th gen. being developed
- Batch process: for production: 150 mm GaAs wafers

- for R&D: 3" and 100 mm GaAs wafers

Features:

- Cross sensitivity $K_H = 700 \Omega / T + -5\%$
- Very low thermal drift $S_T \approx -40/-60 \text{ ppm/}^\circ\text{C}$
- Magnetic sensitivity 0.1 1 V/T typ.
- Noise PSD S_B a few nT/ \sqrt{Hz}
- Low raw offset $\pm -3\sigma \leq \pm 1.4 \text{ mT}$
- The offset can be dynamically canceled through SCMT down to <100 nT for a magnetometer with 30 mT F.S.
- Temporal stability validated by >100M Hall plates in ANSI electricity meters since 1999 (class 0.2%)

Band diagram of the heterostructure

Comparison high-mobility 3D versus QWHS Hall probes

Specs:	3D devices		QWHS		
Sensor type	AREPOC LHP-Mx HHP-Vx series series		ITRON V50 series		
Magnetic field range	0 - 33	0-5	0-33	0-5	[T]
Temperature range	1.5 - 350	1.5 - 350	0.03 - 420 (450)		[K]
Intrinsic sensitivity K _H	0.25	2.5	700		[Ω/T]
Sheet carrier density ns	2.5E+15	2.5E+14	9.0E+11		[cm-2]
Nom. biasing current I _N	20	10	0.07 - 0.14	0.28	[mA]
Sensitivity at I _N	> 5	>50	50 - 100	200	[mV/T]
Signal at nominal induction	> 165	> 250	1650	1000	mV
Offset resistance Roffset (3S)	0.005	0.020	0.7		[Ω]
Equivalent magnetic	20	8	1		[mT]
offset B _{offset} (3S)	20				
Input resistance R _{in} @ 300 K	4	60	3200		[Ω]
Dissipated power @300K, small B P = R _{in} .I _N ²	1.6	6	0.015-0.060	0.25	mW

Black: directly taken from specs Blue: calculated from specs

$$V_{out} = V_H + V_{offset}$$

$$= K_H I_{in} B + R_{offset} I_{in}$$

Equivalent magnetic offset

$$B_{offset} = R_{offset} / K_{H}$$

QWHS STRUCTURE: ANALYSIS OF THERMAL DRIFT

The thermal drift of the sensitivity is mostly controlled by the surface barrier energy

Farah Kobbi's PhD thesis 1996

QWHS Hall probe versus temperature

Temperature range

T_{max} at least 200° C

Operation demonstrated at 70 mK

QWHS Hall probe at very high induction

Hall based sensors: a broad range of device designs

Various QWHS designs developed by ITRON and LSI

- Processed at Thales R&T (S. Xavier/ J. Cholet / Raphaël Aubry)
- Optical lithography finest structures in the µm range 3 metal levels for interconnections
- HTC superconductors, microbead detection, characterization of microstructured magnets, Scanning Hall Probe Microscopy, etc ...

Hall array *T.Klein et al, PRL* **105**, 047001 (2010)

Scanning magnetometer

On chip Hall sensor based AC susceptometer *MI Dolz et al, Phys. Rev. Lett.* **115**, 137003 (2015)

Hall based sensors: a broad range of device designs

QWHS Hall plate with 2µm nominal size for investigating the violation of the FDT theorem in ferrofluids

Komatsu et al., PRL **106**, 150603 (2011)

Hall array *T.Klein et al, PRL* **105**, 047001 (2010)

Scanning magnetometer

On chip Hall sensor based AC susceptometer *MI Dolz et al, Phys. Rev. Lett.* **115**, 137003 (2015)

Recent high-field applications of QWHS -1-

GRADIO 5

10

Investigation of topological superconductivity in substituted Iron Pnictides

- BFAP: $Ba(FeAs_{1,v}P_{v})_{2}$ (Courtesy M. Konczykowski, LSI, Polytechnique)
- Needs sensitivity matching and stability in 4µm wide Hall array • in the 0-2T range

Measurements

Investigation of topological superconductivity in substituted Iron Pnictides

- BKFA: Ba_xK_{1-x}(FeAs)₂ (Courtesy M. Konczykowski, LSI Polytechnique) •
- Needs sensitivity matching and stability in 4µm wide Hall array in the 0-8T range ٠

Magnetic field cycles -8T – +8T

Fine measurements around **B** = **4T**

 μ_n

Basic quantities

- Sheet electron density (2D device) n_s
- Sheet electron density (3D device) $n_s = n_{3D} \times t$
- Electron mobility $(v_d = \mu_n \cdot F)$

Intrinsic Hall cross-sensitivity

intrinsic 2DEG density

- $_{3D} \times t$ 3D electron density x thickness
- depends on material, doping, temperature, ...
- $K_{HO} = 1 / e n_S$, unit = Ω / T $V_{HO} / B = K_{HO} \cdot I_{bias}$ unit = V / T
- 2D resistivity / resistance per square
- Input or output resistance

 $R_{sq} = 1 / (en_{s} \cdot \mu_{n}) = K_{H} / \mu_{n}$ (Planar $R_{in} = G_{R} \cdot R_{sq}$ devices)

Rectangular device:

Output sensitivity

 $G_R = L/W = #$ of squares N

• Non rectangular device: Effective # of squares:

N = L/W = 3 but $G_R = (L/W)^* \approx 2.72 < 3$

Origin of the geometric factor

- Short channel device (L/W = 2.5, G_R ≈ 2.2): the active zone is shunted by the lateral contacts ! G_H ≈ 0.90
 Side effects
 - Non-linearity when B large
 - Increased noise

- Long channel (L/W=4.5, G_R =4)
 - Geometric factor
 G_H=0.99
 - Better linearity

Geometry of Hall plates for high-field measurements

- If the aspect ratio $G_R = R_{in} / R_{sq}$ of the Hall plate is too low (arms too short), then a geometric factor G_H appears in the Hall factor: $K_H = G_H K_{H0} = G_H / en_{S0}$
- The geometric factor of the resistance (aspect ratio) should be kept large: $G_R \ge 4$, so that G_H remains very close to 1
- Otherwise the geometric factor G_H for the Hall sensitivity would become dependent on B: $K_{H} = G_{H}(B) \cdot K_{H0}$

Linked to *time-reversal invariance* of electromagnetism \rightarrow microscopic reversibility

Onsager: symmetry of transport coefficients (resistivity tensor, piezoresistivity tensor, etc.)

Macroscopic reversibility in a 4-contact device

Permutation of bias and sense: Assumes that the magnetic field B is reversed in the operation (odd vector) Sample et al., JAP 61, 1079 (1987)

For practical purposes:

True rotation of biasing and sensing contacts:

Antirotation of biasing and sensing contacts

IMMW21, June 2019, Grenoble, V. Mosser et al.

Principle of offset suppression in Hall measurements

L. Van der Pauw (1958)

Cancellation of LF noise of Hall sensors

Z. Stoessel and Markus Resch, Sensors and Actuators **A37-38**, 449 (1993)

• Remained unnoticed for over 10 years

W

Consequence: • Design Hall device with fourfold symmetry (e.g. Greek cross)

The Spinning Current Modulation Technique (SCMT)

WHAT SCMT DOES

- SCMT effectively cancels the offset and LF noise of Hall sensors
- Also eliminates the noise and offset of the whole acquisition chain (amplifier, interconnects)
- Real-time, broadband

HOW SCMT WORKS

• A combination of 2 principles:

-1-

The Spinning Current Modulation Technique (SCMT) -2-

Output signal:

SCMT principle:

- By combining 4 successive different configurations, one can suppress all parasitic contributions, excepted thermal noise

4-phase modulation:

choose 2 states among #1-#4 and 2 states among #5-#8

• Optimized spinning sequence 1278 + demodulation +1/+1/-1/-1

The offset and LF noise of the Hall sensor, the offset and LF noise of the preamplifier, the pickup noise and thermoeffect from the interconnects

are expected to be canceled

Resolution of Hall microsystem at high field -1-

 Microsystem Hall sensor head + acquisition (V^2/Hz) board including SCMT (spinning current) ≈ 0.095 V/T $K_{H}.I_{in}$ Equivalent input signal $G_{analog} = 10 /$ $G_{dig} = 4$ Full Scale = $\pm 6 \text{ T}$ Resolution 170 nT @ $B_{DC} = 0 T$ 500 nT @ B_{DC} = 1 T Magnetic field source: Permanent magnet 1T + bifilar coil (V^2/Hz) **NdFeB** Equivalent input signal + soft iron body Hall probe **Bifilar** coil 213 µT/A PCB holder Connector IMMW21, June 2019, Grenoble, V. Mosser et al.

Resolution of Hall microsystem at high field -2-

Resolution of Hall microsystem at high field -3-

Goal:

- Profiling the magnetic field along the axis of the MLL-trap superconducting magnet at IPN.
- Penning Trap using a superconducting magnet (Magnex Scientific) in the persistent mode

Freely accessible cylindrical cavity along the magnet axis (diam. 10 cm)

- with highly homogenous magnetic field in a 40 cm long region in the magnet center,
- and decaying magnetic field along the magnet axis

Magnetic field profile along the magnet axis

- QWHS Hall plate calibrated around 0.5T using a NMR regulated electromagnet
- B found to be 7.006 T in the plateau region, in close agreement with the calibration curve from the provider
- Stray field determined along the magnet axis

Rationale

Use the noiseless stray magnetic field in order to characterize

the sensor noise between 0 and 7T.

Ifre

- Eliminate duplicate data
- Data smoothing
- Deembedding of parasitic impedance (C_{cable} = 180 pF)

Noise PSD vs magnetic induction

10

20

(-)

15

Excess noise ~ $1+(\mu B)^2$

(µB)²

25

30

In the time domain

Cutoff frequency:Blue $f_c = 25$ HzOrange $f_c = 1$ Hz

Excess noise × 20 from B=0T to B=7T

0

0

5

Hall signal fluctuation at B = 7 T

- QWHS W = 30 μ m, room temperature
- Spinning current SCMT with acquisition frequency 10 kHz

B = 7 T

- A few ppm signal fluctuation when BW = 1 Hz
- Dispersion $\pm 3 \sigma$ corresponds to $\pm 10 \mu T$

- For magnetometry and micromagnetometry applications at high magnetic field, Quantum Well Hall Sensors may be a good choice
- We demonstrated the capabilities of QWHS
 - for magnetic field metrology in the 0-20T range
 - as well for micromagnetometry at the micrometer level in the 0-8T range
- The temperature range depends on the field strength
 - 70 mK 200°C demonstrated at low field (\leq 1 T)
 - Quantum Hall Effect oscillations at higher field and T < a few K
- Using the Spinning Current Modulation Technique, a QWHS based microsystem with ±6T range shows a resolution better than 1µT, at least @B=1T
- A QWHS was characterized between 0 and 7T, using the stray axial field of a Penning trap superconducting electromagnet in persistent mode
- Noise increase x 20 from B=0T to B=7T

Material for discussion

RAW OFFSET OF QWHS SENSORS

Equivalent misalignment ΔL_{eff} : $\sigma = 45 \text{ nm}$

Offset distribution over a wafer, 70000 devices (raw data)