21st International Magnetic Measurement workshop Grenoble, 24-28 June 2019

Measurement and fiducialization of the ESRF-EBS magnets Gaël Le Bec, Loïc Lefebvre, Christophe Penel, Joël Chavanne

The European Synchrotron

OUTLINE

I. Introduction

Magnets for the EBS

II. Measurement and fiducialization of the magnet series

- Initial plans, tolerances, difficulties encountered
- Measurements and fiducialization at the ESRF
- Main results

III. Magnet calibration and measurement of combined function magnets

- Calibration, cycling and thermal effects
- Curved dipole-quadrupoles
- Combined function sextupole-correctors

IV. Conclusion

OUTLINE

I. Introduction

Magnets for the EBS

II. Measurement and fiducialization of the magnet series

- Initial plans, tolerances, difficulties encountered
- Measurements and fiducialization at the ESRF
- Main results
- III. Magnet calibration and measurement of combined function magnets
- Calibration, cycling and thermal effects
- Curved dipole-quadrupoles
- Combined function sextupole-correctors

IV. Conclusion

INTRODUCTION

Magnets for the EBS

- About 1000 magnets
- Small aperture magnets
- PM dipoles (see Joël's talk)
- Quadrupoles with gradient ~ 90 T/m
- Dipole-quadrupoles
- Sextupoles
- Octupoles

OUTLINE

I. Introduction

Magnets for the EBS

II. Measurement and fiducialization of the magnet series

- · Initial plans, tolerances, difficulties encountered
- Measurements and fiducialization at the ESRF
- Main results

III. Magnet calibration and measurement of combined function magnets

- Calibration, cycling and thermal effects
- Curved dipole-quadrupoles
- Combined function sextupole-correctors

IV. Conclusion

Alignment tolerances

- Fiducialization errors within ± 50 μm
- Magnet centre positioned within ± 50 µm by mechanical shims (depends on magnet families)
- Roll angle tolerance within \pm 50 µrad initially, relaxed to \pm 130 µrad

Survey monuments and inclinometer plate

Mechanical shims to be adjusted

Magnet without position shim

Field quality

 σ_{\cdots}

n

- The ESRF was responsible for the magnetic design
- Magnets with shape and assembly errors were simulated

Simulated standard deviation of multipoles for the high gradient quads, at 7 mm radius, for a \pm 0.04 mm tolerance

 3σ

	• <i>n</i>	2011	
1	16.3	49.0	Fiducialization
2	10.0	30.0	Current
3	4.8	14.4 <	
4	1.9	5.7	Magnetic design
5	1.0	3.1 <	
6	0.5	1.7	Magnetic design
7	0.3	0.9	
8	0.2	0.5	Magnetic design
9	0.1	0.3	
10	0.06	0.2	Magnetic design

Large values of a_3 , b_3 , a_5 or b_3 indicate a quality issue and trigs further investigations

- Mechanical tolerances
- Material
- Coil windings

Initial plans

- Measurements and fiducialization to be done by the magnet suppliers
- Five ESRF stretched wire measurement benches installed at supplier premises
- One (far from Grenoble) supplier encouraged to use its own bench
- Shims to be installed by suppliers for positioning the magnet centres
- Site Acceptance Tests at the ESRF on randomly selected magnets

Difficulties encoutered

- Our benchs are prototypes rather than commercial products
 - \rightarrow Maintenance and software updates needs "expert" users
 - \rightarrow Press-button measurement macros developed... with a few bugs

Difficulties encoutered

- Our benchs are prototypes rather than commercial products
 - → Maintenance and software updates needs "expert" users
 - \rightarrow Press-button measurement macros developed... with a few bugs
- Calibration of the benches

 \rightarrow Weekly measurement of a reference magnet

Difficulties encoutered

- Our benchs are prototypes rather than commercial products
 - → Maintenance and software updates needs "expert" users
 - \rightarrow Press-button measurement macros developed... with a few bugs
- Calibration of the benches

 \rightarrow Weekly measurement of a reference magnet

Fiducialisation

 The I
 The fiducialization was the main difficulty

 The fiducialization was the main difficulty
 Solutions envisaged

 To send laser trackers and staff to the factories
 To fiducialize all magnets in house (adopted)
 The were of

Measurement zone at the ESRF

- 132 PM dipoles assembled and measured
 →Two stretched wire measurement benches
- About 800 magnets to characterize in ~ 1 year
 - \rightarrow Two additional benches dedicated to the SAT and fiducialization

Measurement zone at the ESRF

- 132 PM dipoles assembled and measured
 →Two stretched wire measurement benches
- About 800 magnets to characterize in ~ 1 year
 - \rightarrow Two additional benches dedicated to the SAT and fiducialization

Pre-series tests and ficucialization zone

IMMW21 - Grenoble - 24-28 JUNE 2019 - Gaël Le Bec

PM dipole

assembly and

measurements

Measurement zone at the ESRF

- 132 PM dipoles assembled and measured \rightarrow Two stretched wire measurement benches
- About 800 magnets to characterize in ~ 1 year
 - \rightarrow Two additional benches dedicated to the SAT and fiducialization

Fiducialization and measurements

short term storage

Coordinate measurements with two laser tracker stations

Uncertainty analysis

IMMW21 - Grenoble - 24-28 JUNE 2019 - Gaël Le Bec

Uncertainty analysis

1. Calibration of the wire support references $U_X = 15 \ \mu m$, $U_Z = 18 \ \mu m$

Uncertainty analysis

1. Calibration of the wire support references $U_X = 15 \ \mu m$, $U_Z = 18 \ \mu m$

2. Magnetic measurement $U_{MM} = 4 \,\mu\text{m}$ (including wire diameter)

Uncertainty analysis: one reference

3. Measurements of the wire supports

Uncertainty analysis: four references

3. Measurements of the wire supports

$$U_{WS}^{2} = \frac{\sigma_{WS}^{2}}{4L^{2}} (L^{2} + 4\Delta y^{2})$$

Uncertainty analysis

4. Measurement of the magnet reference $U_{REF}^{2} = \sigma_{REF}^{2}$

with $U_X = 15 \ \mu\text{m}$, $U_Z = 18 \ \mu\text{m}$, $U_{MM} = 4 \ \mu\text{m}$, $\sigma_{WS} = 14 \ \mu\text{m}$, $\sigma_{REF} = 10 \ \mu\text{m}$, $L = 1.2 \ \text{m}$ and $\Delta y = 1 \ \text{cm}$

Uncertainty analysis – How much can fiducialization be improved?

$$U^{2} = U_{X,Z}^{2} + U_{MM}^{2} + U_{WS}^{2} + U_{REF}^{2}$$

- Using a more accurate CMM may allow to decrease these numbers
- Measure the wire supports instead of its references

With a laser tracker

$$U_{X,Z} = 10 \ \mu\text{m}, U_{MM} = 4 \ \mu\text{m}, \sigma_{WS} = 10 \ \mu\text{m}, \sigma_{REF} = 10 \ \mu\text{m}, L = 1.2 \ \text{m} \text{ and } \Delta x = 1 \ \text{cm} \Rightarrow U = 15.5 \ \mu\text{m}$$

With a CMM

$$U_{XZ} = 0 \ \mu\text{m}, U_{MM} = 4 \ \mu\text{m}, \sigma_{WS} = 5 \ \mu\text{m}, \sigma_{REF} = 5 \ \mu\text{m},$$

$$L = 1.2 \text{ m and } \Delta x = 1 \text{ cm} \rightarrow U = 7.5 \text{ } \mu\text{m}$$

This would imply a lot of engineering...

... and would not solve all possible issues!

Uncertainty analysis - How much can fiducialization be improved?

Uncertainty analysis – How much can fiducialization be improved?

- Using a more accurate CMM
- Measure the wire supports instead of its references
- Use finer wire
- Frequent measurements of a reference magnets are necessary (recalibration once per week during the EBS magnet measurements)

Fiducialization uncertainties are NOT alignment uncertainties

- Magnet alignment on girders
 - \rightarrow Position shims may help as it avoid a 2nd measurement of the references
- Alignment between girders
- Transportation(s)
- Thermal effects (time constants ~ 5 h)

References before fiducialization vs magnetic center

- Loose tolerances specified (the position errors were measured)
- Show how the references are improved by the fiducialization
- Depends on the design

Magnet familly	Horiz. σ_X [mm]	Vert. σ_Z [mm]	Long. σ _Y [mm]	
Q-MG	0.14	0.14	0.26	
Q-HG	0.28	0.18	0.38	
S	0.11	0.14	0.22	
DQ	0.12	0.14	0.22	

One order of magnitude improvement by fiducialization

Alignment shims

QD2 moderate grad. quads 220 magnets Gradient ~ 50 T/m Bore radius: 16.4 mm GFR radius: 13 mm Iron length: 212 mm Laminated FeSi, machined poles Chamfers at pole extremities Alignment shims

Vertical position and roll angle of shimmed QD2 quadrupoles

(tolerance: \pm 50 µm, \pm 130 µrad)

Vertical position: $-3 \pm 24 \mu m$, roll angle: $-19 \pm 60 \mu rad$

Vertical position: – 3 \pm 33 μ m if the bench uncertainty is \pm 22 μ m

Higher order multipoles

QD2 moderate grad. quads 220 magnets Gradient ~ 50 T/m Bore radius: 16.4 mm GFR radius: 13 mm Iron length: 212 mm Laminated FeSi, machined poles Chamfers at pole extremities

Significantly higher st. dev. for b_4 and b_6 Accuracy of the extremity chamfer machining?

ding to

Higher order multipoles

 b_n at 7 mm [10⁻⁴ b_2]

QF8 high grad. quads 66 magnets Gradient: 88 T/m Bore radius: 12.5 mm GFR radius: 7 mm Iron length: 484 mm Solid iron (AISI 1010) poles, wire cut No chamfer at extremity

Dashed lines: mechanical errors with 23 μm st. dev., corresponding to a \pm 40 μm uniform distribution of errors

Higher order multipoles

SD1 sextupoles 128 magnets Gradient: 1700 T/m² Bore radius: 19.2 mm GFR radius: 13 mm Iron length: 166 mm Solid iron (AISI 1010) poles wire cut

Vertical position: – $10 \pm 34 \ \mu m$ if the bench uncertainty is $\pm 22 \ \mu m$

Simulations: mechanical errors with 23 μ m st. dev., corresponding to a ± 40 μ m uniform distribution of errors

OUTLINE

- I. Introduction
- Magnets for the EBS
- II. Measurement and fiducialization of the magnet series
- Initial plans, tolerances, difficulties encountered
- Measurements and fiducialization at the ESRF
- Main results

III. Magnet calibration and measurement of combined function magnets

- Calibration, cycling and thermal effects
- Curved dipole-quadrupoles
- Combined function sextupole-correctors
- **IV. Conclusion**

Thermal effects

Moderate gradient quads

Thermal time constant: 5.6 h

 $\Delta G/G = 4 \times 10^{-4}$

Thermal effects

Moderate gradient quads

Thermal time constant: 5.6 hours

 $\Delta G/G = 4 \times 10^{-4}$

Current cycling

- Various cycling schemes studied
- Cycling at restarts, but not during operations: accuracy of current settings?
 - \rightarrow Depends on ΔI
 - \rightarrow Limits the current range

CALIBRATION, CYCLING AND THERMAL EFFECTS

Thermal effects

Moderate gradient quads

Thermal time constant: 5.6 hours

 $\Delta G/G = 4 \times 10^{-4}$

Current cycling

- Various cycling schemes studied
- Cycling at restarts, but not during operations: accuracy of current settings?

→ Depends on ΔI → Limits the current range

Excitation curves

 Being remeasured using cycle C2 and 5 hours warming time

$\Delta G/G$ for different cycling parameters

	$\Delta I = 2 A$	$\Delta I = 6 A$
C1	2.4×10^{-4}	
C2	0.5×10^{-4}	
C3	0.5×10^{-4}	3.4×10^{-4}

COMBINED DIPOLE-QUADRUPOLE MEASUREMENTS

Dipole-quadrupoles (DQs)

Main parameters (DQ1) Integrated field: 584 Tmm Integrated gradient: 38.4 T Iron length: 1028 mm Pole radius of curvature: 35.21 m GFR: 14 x 10 mm x mm

Machined solif iron plates Curved poles

64 DQ1 and 32 DQ2 installed

Design view of the DQ1 magnet

COMBINED DIPOLE-QUADRUPOLE MEASUREMENTS

DQ measurement method

Hall probe mapping

- Done on pre-series magnets
- Time consuming
- Limited accuracy: homogeneity and multipoles are difficult to extract

Stretched wire measurements

- Preliminary method presented at the previous IMMW
- Some improvements done

Design view of the DQ1 magnet

COMBINED DIPOLE-QUADRUPOLE MEASUREMENTS

The European Synchrotron

DQ measurement method

Magnet alignment sequence

Field integrals and 2nd field integrals on straight lines

- → Magnet centre (including longitudinal position)
- \rightarrow Yaw and pitch angles
- →Magnetic length
- \rightarrow Radius of curvature of the poles

Integrated field multipoles

Measured on a straight line

 \rightarrow Conversion to "pseudo multipoles" integrated along a parabola

(Paper submitted to PRAB)

DQ measurement method

Simulation results 3D model implemented with the Radia code

Normal pseudo multipole coefficients at 7 mm, computed with different methods

	Trajectory	Parabola	Straight to parabola
1	10000	10000	10000
2	-4550.8	-4548.0	-4548.5
3	2.5	2.1	4.1
4	3.7	3.8	3.7
5	-2.7	-2.6	-2.9
6	-9.0	-9.3	-9.6
7	2.9	2.8	1.9
8	9.5	10.1	11.0

Can be obtained from SW measurements

DQ stretched wire measurement results

Gradient mag. length: 1047±1.4 mm (sim: 1044 mm) Pole radius of curvature: 32.12±0.8 m (sim: 32.21 m)

Alignment

Repeatability of the mag. measurement: 4 μ m (without removing the wire)

Multipoles

	b_1	β_1	<i>a</i> ₁	α_1
1	10000	10000	7.0 ± 0.7	6.4 ± 0.7
2	5020.8 ± 1.0	4590.9 ± 0.9	0.4 ± 0.3	-0.1 ± 0.3
3	-3.0 ± 0.2	-5.0 ± 0.2	1.3 ± 0.2	1.8 ± 0.2
4	−4.1 ± 0.3	−5.6 ± 0.4	−1.1 ± 0.1	−1.3 ± 0.2
5	-0.7 ± 0.3	5.0 ± 0.2	0.4 ± 0.2	0.4 ± 0.2
6	4.7 ± 0.1	19.1 ± 0.4	−0.1 ± 0.1	0.4 ± 0.1
7	13.95 ± 0.3	8.3 ± 0.5	−0.5 ± 0.1	-0.6 ± 0.1
8	−3.1 ± 0.1	−9.1 ± 0.2	0.2 ± 0.1	0.3 ± 0.2

z (mm)

x (mm)

Gradient homogeneity computed from stretched wire measurements Specification: ±1% within the 14x10 mm ellipse

COMBINED SEXTUPOLE-CORRECTORS

Sextupole correctors

- 1 main PS, 6 main coils $\rightarrow b_3$
- 4 corrector PS, 6 correction coils $\rightarrow a_1, b_1, a_2, b_3$
- Correctors and skew quad settings must not affect the sextupole, and vice versa
- $b_3(I_{Main}, I_1 \dots I_4)$ is non-linear
- and $a_1, b_1, a_2(I_{Main}, I_1 \dots I_4)$ are not linear in $I_1 \dots I_4$!

COMBINED SEXTUPOLE-CORRECTORS

Sextupole correctors

- A 5 inputs and 4 outputs NL numerical model was developed
- Linear and quadratic terms in *I*₁ ... *I*₄
- Cubic spline interpolation in I_{MAIN}

Forward computations $I_{MAIN}, I_1 \dots I_4 \rightarrow a_1 \dots b_3$ Inverse computations

 $a_1 \dots b_3 \rightarrow I_{MAIN}, I_1 \dots I_4$

Difficulties

A lot of parameter (81 parameters a symmetry taken in

In simulations, the errors between a 3D model (Radia) and the NL model are $\sim 10^{-4}$

s must be used

Numerical sextupole model

• All coefficients can be obtained from measurements at 8 corrector currents

Sextupole at I_{MAIN}

Linear and quadratic terms PS 1 and PS 3

Linear and quadratic terms PS 2 and PS 4

Each single multipole measurement (SW, rotating coil) give a₁ ... b₃

8 corrector current settings at each main current
→ Measurement feasible in a reasonable time

- Cycling and "degaussing" sequence defined
- Symmetries used to clean the data
- 15 current settings at each main current

Raw multipoles measured at a given I_{MAIN}

I _{MAIN} (A)	I ₁ (A)	I ₂ (A)	I ₃ (A)	I ₄ (A)	a ₁ (T mm)	<i>b</i> 1 (T mm)	a ₂ /r ₀ (T)	b_3/r_0^2 (T / mm)
90	0	0	0	0	0.081586	-0.25307	-0.02438	0.457691
90	-2	0	0	0	4.080059	-2.5587	-0.02304	0.449297
90	0	0	-2	0	-3.94271	-2.58475	-0.02333	0.44921
90	2	0	0	0	-3.24079	1.659555	-0.02389	0.464308
90	0	0	2	0	3.406766	1.64995	-0.02331	0.464314
90	0	-2	0	0	0.095563	-2.15319	0.055295	0.461032
90	0	0	0	2	0.075286	-2.18184	-0.10247	0.461091
90	0	2	0	0	0.065564	1.976168	-0.11822	0.453468
90	0	0	0	-2	0.083707	2.010712	0.074977	0.453385
90	-2	-2	0	0	4.021977	-4.52737	0.06373	0.452847
90	0	0	-2	2	-3.87582	-4.57373	-0.10912	0.452872
90	-2	0	-2	0	0.065562	-5.27636	-0.02135	0.439055
90	2	0	2	0	0.083672	3.567156	-0.02289	0.470726
90	0	-2	0	2	0.085843	-4.12948	-0.02378	0.464452
90	0	2	0	-2	0.068178	4.422182	-0.02006	0.449141

- Cycling and "degaussing" sequence defined
- Symmetries used to clean the data
- 15 current settings at each main current

Processed multipoles at a given I_{MAIN} (model parameters)									
I _{MAIN} (A)	I ₁ (A)	I ₂ (A)	I ₃ (A)	I ₄ (A)	a ₁ (T mm)	<i>b</i> 1 (T mm)	a ₂ /r ₀ (T)	b_3/r_0^2 (T / mm)	
90	0	0	0	0	0	0	0	0.457691	
90	-2	0	0	0	4.011387	-2.31865	0	0.449297	
90	2	0	0	0	-3.32378	1.907827	0	0.464308	
90	0	-2	0	0	0	-1.91444	0.078882	0.461032	
90	0	2	0	0	0	2.246515	-0.0966	0.453468	
90	-2	-2	0	0	3.948899	-4.29747	0.086426	0.452847	
90	-2	0	-2	0	0	-5.02329	0	0.439055	
90	0	-2	0	2	0	-4.27583	0	0.464452	

- Cycling and "degaussing" sequence defined
- Symmetries used to clean the data
- 15 current settings at each main current

Processed multipoles at a given I_{MAIN} (model parameters)									
I _{MAIN} (A)	I ₁ (A)	I ₂ (A)	I ₃ (A)	I ₄ (A)	a ₁ (T mm)	<i>b</i> 1 (T mm)	a ₂ /r ₀ (T)	b_3/r_0^2 (T / mm)	
90	0	0	0	0	0	0	0	0.457691	
90	-2	0	0	0	4.011387	-2.31865	0	0.449297	
90	2	0	0	0	-3.32378	1.907827	0	0.464308	
90	0	-2	0	0	0	-1.91444	0.078882	0.461032	
90	0	2	0	0	0	2.246515	-0.0966	0.453468	
90	-2	-2	0	0	3.948899	-4.29747	0.086426	0.452847	
90	-2	0	-2	0	0	-5.02329	0	0.439055	
90	0	-2	0	2	0	-4.27583	0	0.464452	

Random multipole strength specifications
Inverse model
Currents
Measurement

Measured multipole strengths specifications

Sample te	est results at	90 A (i.e	. saturated)
-----------	----------------	-----------	--------------

		Test #1		Test #2	
		Spec.	Meas	Spec.	Meas
<i>a</i> ₁	(T mm)	0	0.034	0	0.003
b_1	(T mm)	6	5.96	0	0.097
a_2/r_0	₀ (T)	0	-0.003	0.13	0.1287
b_{3}/r_{0}	² (T / mm)	0.46984	0.46916	0.46984	0.46956

Work in progress...

OUTLINE

I. Introduction

Magnets for the EBS

II. Measurement and fiducialization of the magnet series

- Initial plans, tolerances, difficulties encountered
- Measurements and fiducialization at the ESRF
- Main results
- III. Magnet calibration and measurement of combined function magnets
- Calibration, cycling and thermal effects
- Curved dipole-quadrupoles
- Combined function sextupole-correctors

IV. Conclusion

Measurement of magnet series

- Late decision to characterize all magnets in house
- About 800 electromagnets measured and fiducialized in about 1 year
- Strethed-wire benches used successfully for calibration, field mapping and fiducialization

Fiducialization

- Two laser tracker stations for each magnet
- Benches recalibrated every week vs a reference magnet
- Fiducialization uncertainties estimated to $U_X = 20 \ \mu m$ and $U_Z = 23 \ \mu m$ (These are not magnet to magnet alignment uncertainties!)

Higher order multipoles

Depends on the technology (laminated, solid iron, machined, wired cut, chamfer)

Calibration

- Thermal effects stronger than cycling effects
- Cycling scheme defined

Curved dipole-quadrupoles

- Stretched wire measurement sequence developed and demonstrated
- Alignment, pole radius of curvature and pseudo multipole measured with SW

Combined Sextupole-correctors

- NL model developed
- Tests in progress

ESRF labs and groups

Insertion Devices and Magnets Survey and Alignment Mechanical Engineering Logistics and handling

Magnet manufacturers

Tesla, Danfysik, Budker Institute of Nuclear Physics

