Overview of Magnetic Measurements of Insertion Devices at DESY

Pavel Vagin, Andreas Schöps, Markus Tischer IMMW-21, Grenoble, 24-28 June 2019

Outline

1 Overview

- Individual magnet measurement for sorting
- Undulator measurement with Hall probe & stretched wire
- Undulator alignment & tuning

2 Various Measurement activities

- In-tunnel measurements & shimming
- IVU

3 Measurement activities to come

- APPLE-3 with force compensation
- Variable period undulator

Single magnet field mapping

- Infineon TLV394D integrated 3D Hall sensor, ±200mT range
- Built-in 12-bit ADC (100uT/LSB), temperature sensor, I2C interface
- 3x3mm TSOP-6 footprint, 5mm sensor pitch
- Linear (<1LSB) field measurement range up to ±130mT
- Angular positioning error and gain calibrated with NMR
- Measurement of the whole field map within few seconds
- Updated "parallel" readout, oversampling to improve resolution

Bench

- 12m & 7m KUGLER granite benches
- 6 DoF goniometer
- 1D SENIS, FWBELL probes + search coil for horizontal field
- Dipole magnet for NMR calibration of the Hall probes

Stretched wire

- 2D Newport stages
- Keithley 2182A nanovoltmeter
- Single stretched wire
- ~10Gscm noise at 1mm step
- 60Ohm ~ 1nV/√Hz ~ 0.6Gscm
- Test of AD8428 preamplifier: 1.5nV/√Hz ~ 1Gs*cm noise

DESY. Overview of Magnetic Measurements of Insertion Devices at DESY | Pavel Vagin, IMMW21, 24-28 June 2019, Grenoble

Stretched wire return loop

Minimize and align return loop area parallel to fieldlines to reduce EMI!

Undulator alignment

 Alignment of X, Y, Z, roll, pitch, yaw with respect to the measurement bench

→ accuracy ~10µm, ~0.01mrad

- Same procedure for alignment of longitudinal and also transverse gap taper
 - → accuracy ~1µrad longitudinal, ~1µm taper ~0.05mrad transverse (~30mm base)
- C&D angles to minimize horizontal coil signal
- A&B offsets to set Hall probe exactly to rotation center of W

W=0 & W=180 eliminate even order nonlinearities

Undulator alignment

- W offset & Longitudinal Alignment of top vs. bottom magnet girders (mechanically difficult to measure)
 - → 2-dimensional scans of peak field X positions vs. Y-pos. and W-angle
 - → typ. accuracy ~20µm

Pole tuning

- Virtual shimming by 4 screws
- Individual pole shift and tilt
- Continuous adjustment (~2µm)
- Fast tuning, 2m device < day

DESY. Overview of Magnetic Measurements of Insertion Devices at DESY | Pavel Vagin, IMMW21, 24-28 June 2019, Grenoble

Phase error $< 1 \deg$

Off-axis trajectory correction (remove quadrupoles)

Tuning

Magic fingers

Brute-force enumeration of possible magnet configurations to minimize multipoles

Magic fingers

• ±10Gscm multipole flatness in ±25mm transverse range

Transfer measurements

- Touchprobe: Hall probe bench turns to an automated CMM
- Additional reference mark to match coordinate systems
- Measurement of the magnetic axis with a laser tracker by rotating W

DESY. Overview of Magnetic Measurements of Insertion Devices at DESY | Pavel Vagin, IMMW21, 24-28 June 2019, Grenoble

Outline

1 Overview

- Individual magnet measurement for sorting
- Undulator measurement with Hall probe & stretched wire
- Undulator alignment & tuning

2 Various Measurement activities

- In-tunnel measurements & shimming
- IVU
- 3 Measurement activities to come
 - APPLE-3 with force compensation
 - Variable period undulator

Measurements in the tunnel

- AD22151G Integrated Hall sensors
- ADS1232REF ADC Evaluation Board
- 1% absolute accuracy, 0.1% reproducibility
- Separate measurements of top and bottom

Shimming in the tunnel

- Field increase above the poles, field decrease due to shunting between poles
- Holes to reduce shunting
- Total length is integer number of periods \rightarrow zero impact on field integrals

IVU measurement

- Undulator girder as guiding rail, stepper motor + wire to pull the carriage
- Interferometer position measurement, autocollimator angular correction
- Multiple HE144 hall sensors + ADS1263 ADC

IVU

- Comparable measurements, characteristic features resolved in both systems
- Differences in both systems originate from positioning errors (mostly yaw & roll)

Outline

- 1 Overview
 - Individual magnet measurement for sorting
 - Undulator measurement with Hall probe & stretched wire
 - Undulator alignment & tuning
- **2** Various Measurement activities
 - In-tunnel measurements & shimming
 - IVU

3 Measurement activities to come

- APPLE-III with force compensation
- Variable period undulator

400

Vert., Horiz. Force / period [N]

-8

-5

APPLE-III

- Same magnets for compensation
- x3 magnet pool for sorting
- Force reduction up to factor of 8
- "Continuous" correction magnet
- Measurement with a normal bench through 1mm side gap
- Customized Hall probe holder

8

--- 1vs234 No Comp H --- top vs bot No Comp V --- top vs bot No Comp H 1vs234 With Comp V 1vs234 With Comp V top vs bot With Comp V top vs bot With Comp H

1vs234 No Comp \

Longitudinal Shift / mm

5

Variable period undulator

Arbitrary shaped magnetic field

DESY. Overview of Magnetic Measurements of Insertion Devices at DESY | Pavel Vagin, IMMW21, 24-28 June 2019, Grenoble

Variable period undulator

SRI-2018, AIP Conference Proceedings 2054, 030024 (2019); https://doi.org/10.1063/1.5084587

Stretched wire measurements of the individual magnets inside the structure

DESY. Overview of Magnetic Measurements of Insertion Devices at DESY | Pavel Vagin, IMMW21, 24-28 June 2019, Grenoble

Thank you!

Contact

DESY. Deutsches Elektronen-Synchrotron www.desy.de

Pavel Vagin pavel.vagin@desy.de +49 40 8998 2843