

Overview of the Magnetic Measurement Activities at Sirius

James Citadini

21st International Magnetic Measurement Workshop

24th – 28th June 2019

- Sirius Project and Status
- Magnetic Measurement Systems
- Measurement Results
 - Quadrupoles and Sextupoles: Rotating Coil Measurements
 - Dipoles: Hall Probe Measurements
- Next Steps

Sirius Project and Status

Storage Ring			
Beam energy	3.0 GeV		
Circumference	518.4 m		
Lattice	20 x 5BA		
Hor. emittance (bare lattice)	250 pm.rad		
Hor. emittance (with IDs)	\rightarrow 150 pm.rad		
Nominal current, top up	350 mA		
Long straight sections	5 x 7.5 m		
Short straight sections	15 x 6.5 m		
Superbend peak field	3.28 T		
Superbend critical energy	19.6 KeV		

MINISTRY OF SCIENCE, TECHNOLOGY, INNOVATION AND COMMUNICATION

Magnets installation

Page 7

Booster

Splitting the installation time with Booster beam tests.

Installation of storage ring electromagnets already finished

Currently finishing installation of the storage ring superbends

Storage Ring (12 sections already assembled with vacuum chambers)

MINISTRY OF SCIENCE, TECHNOLOGY, INNOVATION AND COMMUNICATION

NEG coating activation

Vacuum system assembling process

Page 10 Overview of the Magnetic Measurement Activities at Sirius IMMW 21, 24th – 28th June 2019

MINISTRY OF SCIENCE, TECHNOLOGY, INNOVATION AND COMMUNICATION

Installation of RF cavity solid state amplifiers

Booster out-vacuum septum for injection

Overview of the Magnetic Measurement Activities at Sirius IMMW 21, 24th – 28th June 2019

Sirius optical clutch

Sirius Carnauba beamline

MINISTRY OF SCIENCE, TECHNOLOGY, INNOVATION AND COMMUNICATION

Booster beam tests (without RF cavity): More than 15000 turns!

Booster stripline signal.

• Schedule:

Page 13

- Booster commissioning in July.
- Storage Ring delivery in early August.
- Tests of all Sirius subsystems until the end of August.
- September First beam in the Storage Ring.
- January Startup of the first beam lines.

Magnetic Measurement Systems

Magnetic measurement laboratory

Page 16

Magnetic measurement laboratory

Hall Probe Bench

Hall Probe Bench

Page 17

7 m-long granite table	
Hall probes calibrated against NMR me	asurements
Roll, Pitch and Yaw	< ± 15 mrad
Horizontal and vertical straightness	<±12 μm
Longitudinal Linear Error	< ± 6 µm

- Air bearings
- 360000 pulses encoder
- Coil mounted on a ceramic tube
- Springs tensioning system for precision assembly

Rotating Coil

MINISTRY OF SCIENCE, TECHNOLOGY, INNOVATION AND COMMUNICATION

Measurement Results

- Excitation curves measured with the rotating coil systems for all Sirius quadrupoles, sextupoles and slow correctors
- 2D field maps measured for all dipoles with the Hall probe bench
- Sorting algorithm applied to all Booster and Storage Ring electromagnets before installation
- Storage ring fast corrector prototype measured and approved

External Manufacturer (WEG)

- LNLS: simulation, design & magnetic measurement
- WEG: manufacturing, quality control, mechanical measurements

Material: Laminated (0.5 mm) Silicon Steel

Storage Ring quadrupole (single pole) measurement at CMM

Page 22

POLO QUADRUPOLO Q20 MM GAP E/D - SAIDA - FACE_E PARA PNT83 GAP E/D - MEIO - FACE E PARA PNT2 AP A/B - SAIDA - FACE A PARA PNT 4 257 4.263 AD F/D - ENTRADA - FACE E DADA DE 4.270 4.255 P A/B - E TRADA - FACE A PARA PNT Mechanical Tolerances: ± 30 μm

High stability girder

Multipole Magnets aligned by mechanical definition using reference surfaces of magnets and girder

Page 24

		Booster			Storage Ring	
Quadrupole	QF	QD	QS	Q14	Q20	Q30
Number of magnets	50	25	1	70	170	30
Length [m]	0.2	0.1	0.1	0.14	0.20	0.30
Bore diameter [mm]	40	40	40	28	28	28
Maximum Field Gradient [T/m]	18.7	5.2	1.6	37.2	45.4	45.4

Overview of the Magnetic Measurement Activities at Sirius IMMW 21, 24th – 28th June 2019

Page 25

The storage ring sextupole has additional coils to provide horizontal and vertical slow dipolar correctors as well as skew quadrupolar field.

Sextupole	Booster	Storage Ring
Number of magnets	35	280
Length [m]	0.1	0.15
Bore diameter [mm]	40	28
Maximum Sextupole Field Gradient [T/m ²]	200	2402

Overview of the Magnetic Measurement Activities at Sirius IMMW 21, 24th – 28th June 2019

Magnetic center offset for Sirius quadrupoles and sextupoles.

*Dashed lines are the tolerances: 160 µm for Booster magnets and 40 µm for storage ring magnets.

Rotation error for Sirius quadrupoles and sextupoles.

Difference from average strength for Sirius quadrupoles and sextupoles at nominal current.

Average residual field for the storage ring sextupoles (S15) at nominal current.

- H-shape dipole
- > 2000 laminations holded only by screws.
- Measured with a 1.3 m long L-shaped stem.
- Challenging for stable measurements.

Booster Dipoles	
Number of magnets	50
Length [m]	1.2
Central gap [mm]	28
At extraction energy:	
Field [T]	1.03
Quadrupole gradient [T/m]	2.03
Sextupole gradient [T/m ²]	21

Booster Dipoles: Hall Probe Measurements

Integrated field and gradients over trajectory for Booster dipoles.

- Magnets with 2 or 3 straight modules
- Modules mounted at angle on the girder
- Same power supply and same pole profile for both magnets

Storage Ring Electromagnetic Dipoles	B1	B2
Number of magnets	40	40
Length [m]	0.85	1.26
Central gap [mm]	24	24
Field [T]	0.564	0.567
Quadrupole gradient [T]	7.58	7.60

- In-house production
- NdFeB permanent magnet blocks
- Low carbon steel for the yoke and low field poles
- Iron-Cobalt for high field poles.

Page 34

- Peak field of 3.2 T
- 19 keV photon critical energy
- 10% emittance reduction due to superbend longitudinal gradient

Storage Ring Superbend	
Number of magnets	20
Length [m]	0.8
Minimum Gap [mm]	10.2
Peak Field [T]	3.28
Integrated Field [T.m]	-0.75
Integrated Quadrupole Gradient [T]	6.25

Magnetization measurement of the first PM blocks batch with the Helmholtz coils system:

```
Amplitude error = 0.6 %
```

Angular error < 1°

Included movable parts for field adjustment in the superbend design to compensate for magnetization errors:

Parameter	Integrated Field Variation [%]	Integrated Gradient Variation [%]
Control Gap	3.1	3.1
Rotating Pole Angle	< 0.06	±3.8

Control Gap [mm]

Control gap and rotation pole angle for BC magnets after field adjustment.

Storage Ring Dipoles: Hall Probe Measurements

Integrated field and gradient over trajectory for all storage ring dipoles.

*Electromagnetic dipoles (B1 and B2) at nominal current.

• **Prototype:** The response frequency attenuation for the fast corrector is -3dB at 11.5kHz

• Currently under production

Storage Ring Fast Correctors		
Number of magnets	80	
Maximum horizontal and vertical strength	30 µrad	

Delta Undulators:

	Delta 21	Delta 52
Period [mm]	21	52
Gap [mm]	7	14
Total length [m]	2.4	3.6
Maximum K	2.1	5.8

Sirius Delta undulator prototype.

- Extensive temperature tests for the Superbend.
- Measurements and installation of the fast correctors.
- Reassembly and Developments of measurements systems for insertion devices.
- Mechanic and automation tests for the delta prototype.
- Redesign of the keepers and assembly of the first delta prototype.
- Vacuum chamber challenges for installation and NEG coating activation.

IPAC21 BRAZIL

Foz do Iguaçu, PR May 23 - 28, 2021

Thank you for your attention!

Overview of the Magnetic Measurement Activities at Sirius IMMW 21, 24th – 28th June 2019

