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Planetary differentiation

ELEMENT DISTRIBUTION DURING PLANETARY MELTING

Does pressure affect the geochemical affinity of elements with silicate melts? 

→ compatible/incompatible: crust formation  176Lu/176Hf, 146Sm/142Nd, 182Hf/182W 
→ lithophile/volatile: atmosphere formation  129I/129Xe



X-ray diffraction:  
All elements contribute to signal 

X-ray absorption spectroscopy: 
Chemically selective, model dependent 

Exploring silicate melt structure at high P-T conditions

Informations:  
1) First coordination shell: interatomic distance, nature of neighbouring atoms, 

coordination number, oxidation state 

2) mid-range order (XRD), second coordination shell (XRD, XAS) 

Drewitt et al., PRB 2013. Wilke et al., Chem. Geol. 2006.
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basalt

Alumino-silicate glass



X-ray diffraction:  
All elements contribute to signal 
Restrictions: only very heavy elements 
	      Fe-free compositions 

Elements: Lu, Nd, Xe

X-ray absorption spectroscopy: 
Chemically selective, model dependent 
Restrictions: 11 keV < energy < 30 keV 

Elements: W, Nb, Br, Kr

SiO2 Al2O3 FeO MgO CaO Na2O K2O H2O

granite 76% 13% 2% 0.5% 2.5% 3% 2%

haplogranite 68% 11% - - - 4% 3% 15%

basalt 50% 15% 8% 8% 13% 2% 2%

Melts compositions:

Drewitt et al., PRB 2013.
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Trace and minor elements in magmas: experimental approaches

Major oxide components in silicate melts:



Probing trace elements in melts at high P-T conditions using XRD

Window between 1.8-2.5 Å: where many key trace elements are expected 

Requirement of a sufficiently large q-range: 
high-energy angle dispersive XRD in DACs or energy dispersive XRD in large volume presses

73 keV ID15, 10 ms

60 keV P02.2, 2 min

42 keV I15, 1 min

33 keV exID09, 5 s

Molten 
haplogranite 
in RH-DAC 
Or ambient 

P-T glass 

Ideal but 
impossible now 

at high P

Best at high P

Possible at high P

Insufficient 
resolution

Sanloup and de Grouchy,  
in Magmas under pressure 2018.



Angle-dispersive x-ray diffraction and DACs:  
correction for diamonds Bragg peaks is significant at high energies 

33 keV, MAR555 60 keV, Perkin-Elmer

Probing trace elements in melts at high P-T conditions using XRD



Energy-dispersive x-ray diffraction and large-volume press 

NB: some elements may have strong fluorescence peaks that need to be removed

de Grouchy 
et al,  
EPSL 2017

Probing trace elements in melts at high P-T conditions using XRD

Anorthite-diopside 
melt + Lutetium 

APS, HPCAT, 
16BM-B



Resistive heating DACs:  

Optimizing sample volume  
Large opening DACs, e.g. Boelher-Almax 
anvils 
Need hydrated glasses to lower melting T 

Paris-Edinburgh press: 

Exploring silicate melt structure at high P-T conditions

P-T range: 
8 GPa – 2000C

Same cell-assembly used for XRD and XAS 
(provided by the APS)

High stability at high T, large vertical access 



Using nanocristalline diamond capsules 
(Ehime)

Using polycrystalline diamond capsules 
(Almax)

2 GPa4 GPa

Br-dopped (0.4 at%) dacitic melt	

X-ray absorption spectroscopy at high P-T conditions

Requires nanocristalline diamond capsules or anvils 
PRIUS programme, GRC Ehime University (Pr. Irifune) 

Cochain et al. Chem Geol 2015



Long collection times (3 hours) ⇒ Need high stability cell-assembly and large vertical gap 

to optimise signal/noise ratio  

Nanocristalline diamond capsules  
⇒ Need to raise T above 1000 ℃ for P increase 

Use of Pt-Rh or graphite caps: 
Possibility to buffer the redox state (also talc powder outside caps) 

X-ray absorption spectroscopy using a Paris-Edinburgh press

P-T range: 
8 GPa – 2000 ℃van Kan Parker et al., High Press. Res. 2010.



de Grouchy et al, EPSL 2017
An-D: Fe-free basalt analogue

HPG: Fe-free granite analogue

CN=6

CN=8
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⇒  Lu-O coordination change in basalts: from 6 to 8 at 4-5 GPa

Fit of the Lu-O contribution:

Lutetium - X-ray diffraction in DACs (Diamond, I15) and PE press (HPCAT)



Changes of environment of Lu, Nd 
in melts at high P: summary

• Lu-O: CN changes from 6 to 8 at ∼4-5 GPa 
• Coincides with change of P-dependence in 

crystal/melt partitioning 
    

• Nd-O: CN changes from 6 to 8 at ∼1-2 GPa 

⇒  Decoupling of Lu/Hf and Nd/Sm systems 
for high P melts

⇒  DLu/DHf ∼ 1 above 5 GPa: Lu and Hf 
should not be fractionated in high P basalts

SiO2 glass layer, TEM 
Huang et al., Nano Lett., 2012

de Grouchy et al., EPSL 2017



Reactivity of xenon and krypton in magmas

Haplogranite melt

Xe-O = 2.1±0.1 Å  

X-ray diffraction @ 60 keV, PetraIII (Hambourg)

Leroy et al. EPSL 2018 ⇒ similar distance in crystals, but different CN



Reactivity of xenon and krypton in magmas

Glass and molten feldspar (sanidine) doped with Xe:Kr gas  
EXAFS, ESRF (BM23)

Crépisson et al. Chem Geol 2018

Xe edge Kr edge



Reactivity of xenon and krypton in magmas

Crépisson et al. Chem Geol 2018

Kr-O = 2.5±0.1 Å  

 ⇒  Kr also gets oxidized under pressure

Glass and molten feldspar (sanidine) doped with Xe:Kr gas  
EXAFS, ESRF (BM23)
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• Current debate on change from W6+ to W4+ with pressure

Basalt +0.6 wt% W		

Cochain et al. In prep.

Tungsten - X-ray absorption in Paris-Edinburgh press (ESRF, BM23) 

⇒  Reduction of W in the melt around 2-3 GPa 
⇒  Not preserved in the quenched glass



100 µm Fonseca et al, EPSL 2014

Righter&Shearer, GCA 2003

This work, nanoSIMS

⇒  High pressure residues have high [W]

P effectfO
2  effect

Tungsten – Effect of oxidation state on partitioning

Fonsecca et al. EPSL 2014

4 GPa

1 GPa



Melts compositions:

Trace elements in melts: perspectives opened by the EBS

X-ray diffraction:  
Currently limited to upper mantle studies 
for trace elements 

EBS:  
Much shorter collection times at high 
energy (>60 keV) 
Better focussing at high energy  
⇒ compatible with laser heating DAC 

X-ray absorption spectroscopy: 
Chemically selective, model dependent 
Restrictions: 11 keV < energy <30 keV 

EBS: 
Higher energies accessible at high P-T 
Real ‘trace’ elements studies instead of 1% 
concentrations, i.e. <0.1 at% 

Eventually also using LH-DACs

⇒ Opens applications to the whole terrestrial P-T range   

(i.e. deep mantle reservoirs, core formation) with natural concentrations
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