Extreme conditions programme at BM23/ID24 after the EBS upgrade

A.D. Rosa

O. Mathon, S. Pascarelli, C. Clavel, N. Sevelin-Radiguet, R. Torchio, K. Lomachenko, S. Pasternak, F. Perrin, H. Gonzalez, A-R. Ruiz-Bailon, F. Torrecillas, F. Villar, G. Berruyer

EXTREME CONDITIONS XAS STUDIES AT ID24/BM23

Since 2012 ~ 40 % of beamtime

Clear difference!

Dewaele et al., 2016, Nature Chemistry

Pohlenz et al., 2018, Chemical Geology

Donnerer et al., 2018, PRB

splitting

.....

OPPORTUNITIES WITH EBS

current limitations

ID24:

- Variable beam size (increase with E, at Kr 50 µm FWHM)
- 120 GPa, 3500 K
- Mostly XANES often no EXAFS
- Major elements
- No spatial resolution, XRF very challenging

BM23

- Limited flux
- No access to real dilution levels at high P/T
- Major elements and high Z elements 150 GPa

With the EBS these limitations will be overcome !

NEW BEAMLINE CAPABILITIES ID24-DCM BM23

	ID24 DCM	BM23		
EXAFS	5-45 keV	5-75 keV	If combined with nano	
	up to 20 Å ⁻¹ , ΔE/E= 10 ⁻⁵		polycrystalline diamonds (T. Irifune)	
Spot size	0.6*0.6 μm²	3*3 μm ²		
Flux ph/s	8*10 ¹¹ - 2*10 ¹³ One order of magnitude	2*10 ⁹ - 2*10 ¹⁰ Factor 2-3		
Time resolution	Quick EXAFS	S (1s/EXAFS)	S S S S	
XRF	With spatial resolution			

NEW DOUBLE CRYSTAL MONOCHROMATOR ID24 DCM BM23

Outstanding performance:

Extremely high energy and position stability and reproducibility

- angular stability 0.05 µrad
- Bragg angular position repeatability (0.1 µrad)
- spot position stability on sample (below 1 μm)

Over E scan of 30° (4.5 keV) New feedback system - real time control of crystal parallelism

Ideal for:

- Long acquisitions on highly diluted samples
- Time resolved studies (quick scans, mapping)
- Change of energy for XRD XAS

KB SYSTEM ON ID24

Enhanced focusing capabilities

With possibility of a variable spot size on sample

NEW DETECTION SYSTEMS FOR XRF AND XRD

• **Poly-capillary** + **SDD** + high P/T sample environments

• Pilatus 2M XRD detector

• Crystal analyzer coupled to µm beam and high P/T sample

environments

LH-SYSTEM UPGRADE ID24 ESRF

Highly diluted elements at extreme *P*/*T* **conditions, high spatial resolution**

- EXAFS, XRD and XRF + poly-capillary
- Color filter system to measure thermal gradients
- Modular crystal to variate YAG laser frequency
- Beam shapers

SCIENTIFIC POSSIBILITIES

Partitioning and speciation experiments of minor elements at Earth's core conditions

+ XAS/XRF (speciation, distribution)

+ T gradient (partitioning and melting experiments)

+ XRD (complementary structural information, P determination)

Andrault et al. (2012) Nature

SCIENTIFIC POSSIBILITIES

Ultra-high pressure experiments > 400 GPa for users

https://www.wikiwand.com/en/Diamond_anvil_cell

SCIENTIFIC POSSIBILITIES

Standard EXAFS experiments at high dilutions with high k-range

Pohlenz et al., 2018, Chemical Geology

+ **spatial resolution** (partitioning experiments)

+ tomography

March 2020/2021 BM23 user operation 01/2021 ID-24 DCM user operation 01/2022

Thank you for your attention

