

## High flux nano-XRD beamline for Science under extreme conditions

**Beamline Team:** S. Bauchau, G. Garbarino, V. Svitlyk and M. Mezouar

#### **Project Contributors:**

Beamline conceptual design: K. Martel Ray tracing simulations: J. Reyes Herrera and M. Sanchez del Rio Heat load calculations: P. Brumund Mirrors geometry and coatings: R. Barrett and C. Morawe X-ray source definition: J. Chavanne

**+Experts at the ESRF**: P. Cloetens, R. Tucoulou, M. Di Michiel, V. Honkimaki, P. Boesecke, Y. Dabin, L. Eybert

and from external companies: Microplan, Cinel



## **GENERAL BEAMLINE CONFIGURATION**

Main objectives:

- Build a new high pressure X-ray diffraction, fluorescence and imaging beamline. -Take full advantage of the EBS to address the challenges defined in the scientific case.





Materials at and beyond the current limits of static pressures and high temperatures



micro  $\rightarrow$  nano-XRD

#### Solving the fluid H<sub>2</sub> to fluid H transition



High photon flux Monochromatic  $\rightarrow$  Pink beam



#### STRUCTURE AND CHEMISTRY OF LOW Z MELTS AND GLASSES

#### Fast melting, kinetics of chemical reactions at extreme conditions





Exploring extreme temperature states using laser heating



# Converting ID27 into a nano-XRD/XRF beamline



#### **RHEOLOGY OF MATERIALS UNDER EXTREME CONDITIONS**

New type of experiments: Tomography



The European Synchrotron ESRF

basic principles:

-Reduce the number of optical elements to a minimum to improve the stability of the beamline and optimally exploit the intrinsic beam properties.

-Exploit the very low horizontal emittance of the EBS (No need for a secondary source)  $\rightarrow$ Simplified optical configuration in "horizontal geometry"



-U18 cryo-undulator (CPMU18) placed in the middle of the ID27 straight section  $\rightarrow$ minimum gap of 5mm (Kvalue=2.127).

-Best system in terms of photon flux and tunability.

-It will replace the two currently installed U23 in-vacuum undulators.



## **OPTICAL DESIGN – OH1 WHITE BEAM OPTICAL HUTCH**

### Re-used ID27/OH





## **OPTICAL DESIGN – OH2 "PINK" BEAM OPTICAL HUTCH**

Β In-line 5001/s Ion Pump Mono Beam DCM Re-used ID27/EH1 Viewer 40 meters from source X-ray beam Existing Granite Table

The European Synchrotron | ESRF

#### **BEAMLINE END-STATION**

Large thermo-stabilized experimental hutch (+-0.1 K)

3 KB mirror systems for different beamspot sizes and energy domains

3 goniometers: -Laser heating (YAG and CO2) -Heavy duty (PE press, cryostat) -Nano-goniometer

3 detectors Eiger2/CdTe for XRD PCO/CMOS for XRI Vortex SSD for XES





hexapod with 6 piezo-actuators

YZ scanning with 20 nm precision





|                                                   | KB#1                              | KB#2                            | KB#3                                                 |  |
|---------------------------------------------------|-----------------------------------|---------------------------------|------------------------------------------------------|--|
| Coating/Multilayer                                | Pt                                | W/B <sub>4</sub> C              | Ir/Al <sub>2</sub> O <sub>3</sub>                    |  |
| Energy range (keV)                                | 15-25                             | 33(fixed)                       | 30-60                                                |  |
| Total Transmission                                | 60-70%                            | 74%                             | 64% (at 30 keV)                                      |  |
| $\Delta E/E FWHM$                                 | >10% 2%                           |                                 | 2%                                                   |  |
| Length $\underline{L}_{h}/\underline{L}_{v}$ (mm) | 200/200                           | 170/170                         | 300/300                                              |  |
| Useful $M_h/M_v$ (mm)                             | 180/180                           | 140/140                         | 250/250                                              |  |
| ph(m)/qh(m)                                       | 110/0.30                          | 110/0.50                        | 110/1.2                                              |  |
| $p_v(m)/q_v(m)$                                   | 110/0.55                          | 110/0.70                        | 110/0.80                                             |  |
| Working distance from                             | 200                               | 450                             | 550                                                  |  |
| enclosure (mm)                                    |                                   |                                 |                                                      |  |
| Incidence angles at                               | $\theta_{\rm H}=2.48~{\rm mrad}$  |                                 |                                                      |  |
| centre                                            | $\theta_{v} = 2.71 \text{ mrad}$  | $\theta_{cen} = 7 \text{ mrad}$ | $\theta = 7 \text{ mrad} \text{ at } 30 \text{ keV}$ |  |
| Maximum                                           | $\theta_{\rm max} = 3 {\rm mrad}$ |                                 |                                                      |  |
| Aperture H/V (mm)                                 | 0.47/0.5                          | 1.0/1.0                         | 1.8/1.8                                              |  |
| Slope errors (nrad)                               | 100                               | 100                             | 300                                                  |  |
| ideal spot HxV (nm)                               | 210/190                           | 380/340                         | 1700x2000                                            |  |
| Target spot size                                  | 200x300                           | 350x500                         | 2000x2000                                            |  |
| VxH (nm)                                          |                                   |                                 |                                                      |  |
| Metrology                                         | Fixed                             | Fixed                           | Bending                                              |  |



## **EXPECTED FLUX AT SAMPLE POSITION**

| Energy [keV]                                 | 15                   | 33                   | 60                   | ID27                                |
|----------------------------------------------|----------------------|----------------------|----------------------|-------------------------------------|
|                                              | (KB1)                | (KB2)                | (KB3)                | old storage ring                    |
| Beam spot size<br>HxV (µm)                   | 0.22x0.28            | 0.47x034             | 2x2                  | 2x3                                 |
| Photons/s<br>$\Delta E/E=1.5.10^{-4}$<br>DCM | 7.10 <sup>12</sup>   | 1.1.10 <sup>13</sup> | 2.2.10 <sup>12</sup> | 0.9.10 <sup>11</sup><br>(at 33 keV) |
| Photons/s<br>$\Delta E/E=2\%$<br>Pink beam   | 5.0 10 <sup>14</sup> | 7.10 <sup>14</sup>   | 1.10 <sup>14</sup>   | NA                                  |

Gain x100 in monochromatic to x1000 in pink beam







Frame rate: 0.2 Hz Sensitivity <20 % at 30 keV dynamic range: 13 bits

Frame rate: 250 Hz Sensitivity >90 % at 30 keV dynamic range: 20 bits



Timetable of the project:

- -Nov. 2019: Technical Design Report
- -Feb. 2020: Beginning of construction
- -March 2021: Radiation test
- -April: Beamline commissioning
- -Mai-June 2021: User operation

