Pheliqs

Daniel Braithwaite

Université Grenoble Alpes and CEA Grenoble

Heavy fermion systems

What are they?
Why are they interesting ?
How does high pressure help ?

Daniel Braithwaite

Université Grenoble Alpes and CEA Grenoble

Heavy fermion systems
Some of the most exciting solid state physics today
Pressure experiments can be applied to many different materials

Introduction to heavy fermions

Fermi Gas

Drude-Sommerfeld model

$$
c_{v, \mathrm{el}}=\frac{\partial u}{\partial T}=\frac{\pi^{2}}{3} g\left(\varepsilon_{F}\right) k_{B}^{2} T=\frac{\pi^{2}}{2} n k_{B}\left(\frac{k_{B} T}{\varepsilon_{F}}\right)=\gamma T
$$

Introduction to heavy fermions

Fermi Liquid or Landau-Fermi Liquid

$$
\begin{aligned}
\gamma^{*} & =\frac{C}{T}=\frac{m^{*}}{m} \frac{3}{2} R\left(\frac{\pi^{2} k_{B}}{3 \varepsilon_{F}}\right)=\frac{m^{*}}{m} \gamma \\
\rho & =\rho_{0}+\mathrm{AT}^{2}
\end{aligned}
$$

Empirical relation : $\mathrm{A}^{2} \approx \mathrm{~m}^{*}$
C / T of copper $0.7 \mathrm{~mJ} / \mathrm{mol} . \mathrm{K}^{2}$
CeAl_{3} : The 1st heavy fermion

$$
\begin{aligned}
& \text { Fermi liquid : } \mathrm{C}=\gamma \mathrm{T} \\
& \rho=\rho_{0}+\mathrm{AT}^{2}
\end{aligned}
$$

FIG. 1. Specific heat of CeAl_{3} at very low temperatures in zero field (\bullet, Δ) and in $10 \mathrm{kOe}(\square)$.

FIG. 3. Electrical resistivity of CeAl_{3} below 100 mK plotted against T^{2}.
K. Andres et al. PRL 1975

Heavy Fermions : Kondo Effect

AF interaction between local spins and conduction electrons
High T-weak coupling Low T-strong coupling

> Kondo impurety $=>$ singlet Kondo Lattice : exhaustion and coherence

Heavy Fermions : Kondo Effect

AF interaction between local spins and conduction electrons

Unconventional superconductivity

F. Steglich et al. PRL 43, 1892 (1979)

Heavy Quasiparticles seen by dHvA oscillations

Heavy-Fermion Quasiparticles in $\mathbf{U P t}_{3}$

L. Taillefer and G. G. Lonzarich

Cavendish Laboratory, Cambridge CB30HE, United Kingdom
(Received 21 October 1987)

	$F(\mathrm{MG})$		m^{*} / m_{e}	
Branch: $F S$ orbit	Expt.		Calc.	Expt.

Reduced energy scales
$\mathrm{T}_{\mathrm{F}} 10^{5} \mathrm{~K}=>\mathrm{T}_{\mathrm{K}} 10 \mathrm{~K}-100 \mathrm{~K}$
Easy to change ground state with external H, P

High pressure to probe strongly correlated systems $\mathrm{dV} / \mathrm{V}=\mathrm{dP} / \mathrm{B}_{0} \quad$ Typically $1 \mathrm{GPa}=>\mathrm{dV} / \mathrm{V}=1 \%\left(\mathrm{~B}_{0}=100 \mathrm{GPa}\right)$ But low energy scales $=>$ relatively low pressures needed

N. Mathur et al. NATURE |VOL 394 | 2 JULY 1998

Saxena et al. Nature 406 (2000) 587

Often 2-3 GPa is enough : Large volume piston cylinder cells

But not always...

A. Holmes et al. J. Phys. Soc. Jpn., Vol. 76, No. 5

Pmax 10-20 GPa is desirable

High pressure generation

Measurements in the DAC

Measurements in the DAC

Resistivity, calorimetry, ac susceptibility $15 \mathrm{GPa}, 50 \mathrm{mK}, 18 \mathrm{~T}$

Material growth : single crystals

In-situ pressure tuning

Transport measurements

Resistivity

$R=\rho L / S=\rho L / l x h$

Metals

Scattering
$\rho=\rho_{\mathrm{IMP}}+\rho_{\mathrm{PH}+}+\rho_{\mathrm{MAG}}+\rho_{\mathrm{EL}}$
$\rho_{\text {IMP }}=$ Cte
$\rho_{\mathrm{PH}}=\mathrm{T}^{5}(\mathrm{LT})$ then T
$\rho_{\mathrm{MAG}}=$ complicated !
$\rho_{\mathrm{EL}}=\mathrm{AT}^{2}$ with A^{2}
proportional to m^{*}

Superconductors

$\mathrm{R}=0$

Electrical transport

Scattering

$$
\rho=\rho_{\mathrm{IMP}}+\rho_{\mathrm{PH}+}+\rho_{\mathrm{MAG}}+\rho_{\mathrm{EL}}
$$

Anisotropy => need single crystals
Scattering

$$
\rho=\rho_{\mathrm{IMP}}+\rho_{\mathrm{PH}+}+\rho_{\mathrm{MAG}}+\rho_{\mathrm{EL}}
$$

Electrical transport
Scattering

$$
\rho=\rho_{\mathrm{IMP}}+\rho_{\mathrm{PH}+}+\rho_{\mathrm{MAG}}+\rho_{\mathrm{EL}}
$$

Magnetically mediated superconductivity at a QCP

Quantum critical point
Fluctuations diverge even at 0 K
Non-Fermi Liquid effect
Increase of effective mass
Superconductivity

Heavy Fermions : model systems for Quantum Criticality

Fe Superconductors

Pressure/doping
High T_{C} Superconductors

Specific Heat

Thermodynamic quantity

Specific Heat
Non-adiabatic relaxation method

(b)

A.C. Specific heat measurement

$$
T_{a c}=\frac{P_{0}}{K+j C \omega}
$$

$$
\mathrm{P}=\mathrm{P}_{0}(1+\cos \omega \mathrm{t})
$$

C is contained in the signal amplitude and Phase

High frequency - C
Low frequency - K

In the diamond anvil cell

A.C. Measurement
gasket epoxy

Demuer et al. J. Low Temp. Phys. (2000)

$A C$ specific heat under pressure

Not quantitative but bulk measurement

In general AF order and SC are in competition, even though AF fluctuations are probably the mechanism behind SC

DC Magnetization measurements

AC Magnetization measurements

Quantum critical point in $\mathrm{YbCu}_{2} \mathrm{Si}_{2}$

Cerium systems

RE valence measured by RIXS

A. Fernandez-Pañella et al PRB 2012

Ferromagnetic order in $\mathrm{YbCu}_{2} \mathrm{Si}_{2}$

Fernandez-Panella et al. PRB 84, 134416 (2011)

Direct microscopic proof of ferromagnetism : XMCD

F. Wilhelm et al. PHYSICAL REVIEW B 99, 180409(R) (2019)

Tateiwa et al. RSI 2012

Extreme conditions: High magnetic field and pressure

Superconducting magnets 20T Hope from HTSC $=>30 \mathrm{~T}$

Resistive magnets 35 T Hybrid 45T

Ferromagnetic superconductor?

Normally antagonistic states

Superconductivity

Ferromagnetism

$$
H_{P}=\frac{\sqrt{2} \Delta}{g \mu_{B}} \approx 1.85 T_{C}
$$

Ferromagnetic superconductor?

Normally antagonistic states

Implies triplet SC order parameter

Superconductivity

Triplet
Ferromagnetism

UGe_{2} : First ferromagnetic superconductor

Saxena et al. Nature 406 (2000) 587

3 ferromagetic superconductors

Saxena et al. Nature 406 (2000) 587

D. Aoki et al. Nature 413 (2001) 613.

N.T. Huy et al.: PRL 99 (2007) 067006

FM fluctuations are the «glue» for the pairing mechanism

FIG. 2. The p-state superconducting transition temperature as a function of the exchange interaction parameter \bar{I} with range $b=0.5 k_{F}^{-1}$.

Magnetic (FM) fluctuations can be the glue for Cooper pairs
D. Fay and J. Appel, Phys. Rev. B 22, 31731980.

B. Wu et al., Nature Communications, 14480 (2017)

Magnetic field can also tune the pairing interaction

Proof of the role of FM fluctuations

Re-entrant superconductivity in URhGe

Orthorhombic
F. Levy et al. Science (2005)
A. Miyake et al.: JPSJ (2008)

URhGe under hydrostatic pressure

Hydrostatic pressure

A. Miyake et al. JPSJ (2009)
pressure drives URhGe the wrong way !

Negative pressure : Uniaxial stress?

Measurement F. Hardy.
D. Aoki et al. Comptes Rendus Physique (2011).

Ehrenfest : $\mathrm{dT}_{\text {Curie }} / \mathrm{dP}=-1.6 \mathrm{~K} / \mathrm{GPa}$

URhGe : superconducting phase diagram with stress

URhGe : Stress dependence of parameters

H_{R} extremely sensitive to stress, more than $\mathrm{T}_{\text {Curie }}$

Superconductivity strongly enhanced
T_{SC} seems correlated to H_{R} and not to $\mathrm{T}_{\text {curie }}$

Braithwaite et al. PRL 120, 037001 (2018)

Combining Pressure and Pulsed Magnetic Field

60T field pulse
$\mathrm{T}_{\text {MIN }} 1.5 \mathrm{~K}$
Heating $=0.1 \mathrm{~K}$
$\mathrm{CeRh}_{2} \mathrm{Si}_{2}$-Low temperature phase diagram

$\mathrm{CeRh}_{2} \mathrm{Si}_{2}$ - Low temperature phase diagram

Re-entrant superconductivity in UTe2

Ran et al. arxiv.org/abs/1905.04343

Summary for heavy fermion superconductivity/ High pressure

AF Quantum critical point : magnetically mediated superconductivity

Ferromagnetic superconductors (UGe2, URhGe, UCoGe)

- Triplet p-wave superconductivity
- Superconductivity reinforced by magnetic field

- Information on the microscopic mechanism of superconductivity

In general we are much closer to a full understanding of superconductivity in heavy fermion systems than in other unconventional superconductors

Perspectives for SCES with the EBS

Extreme conditions

- Lower T. Close to, though not necessarily in, the SC state
- Higher Fields

To study:

- Structure
- Valence
- Magnetism

Diffraction : structural parameters

Compressibility, structural phase transitions
At low T, high field
Thermal expansion?

Absorption: valence state of the Rare Earth

Magnetic field control of valence?

Magnetism

XMCD : already the most precise magnetization measurment for FM under pressure

Probing the pressure dependence of the orbital to spin moment ratio in the ferromagnetic superconductor UGe2
F. Wilhelm et al, to be published

Magnetic diffraction under pressure?

Measurement in $\mathrm{ID} 20 \mathrm{Ce}(\mathrm{Fe}, \mathrm{Co})_{2}$ in 2005

Pressure device for resonant magnetic x-ray scattering
Nolwenn Kernavanois, ${ }^{\text {a) }}$ Pascale P. Deen, and Luigi Paolasini
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
Daniel Braithwaite
Département de Recherche Fondamentale sur la Matière Condensée, SPSMS-LCP, CEA-Grenoble,
17 rue des Martyrs, 38054 Grenoble Cedex 9, France
(Received 31 January 2005; accepted 25 April 2005; published online 4 August 2005)

I. Povedano et al (Diamond), talk in EHPRG Prague sept 2019

Predictions are difficult

In general advances in Strongly Correlated Electrons have been due to the discovery of new materials

Macroscopic measurements have been predominant in SCES studies under pressure

This balance is probably going to change

