Dynamic laser compression at XFELs

pushing boundaries and identifying challenges

Zastrau U.¹, Appel K.¹, Baehtz C.³, Chen B.², Göde S.¹, Konopkova Z.¹, Makita M.¹, Nakatsutsumi M.¹, Priebe G.¹, Toncian T.³, Pelka A.³

¹ European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany

- ² Chinese Academy of Engineering Physics, Mianyang, People's Republic of China
- ³ Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany

European XFEL HED High-Energy Density science

ESRF, 29-30 March 2017

European XFEL—a leading new research facility

How it works: a closer look at the facility

European XFEL

XFEL properties at the HED instrument (SASE2)

Fully tunable between	3 – 25 keV (3 – 5 keV with limited performance)
Pulse duration	2 – 100 fs
Number of photons per pulse	~10 ¹² (25 keV), ~10 ¹³ (5 keV)
Spot size on sample	sub-μm (HIBEF), few μm, 20 – 30 μm, 200 – 300 μm, few mm
Seeded beam	First SASE beamline to be seeded; available soon after initial commissioning
Repetition rate	shot on demand (pulse picker), 10 Hz – 27000 pulses/sec

X-ray free-electron lasers worldwide with big OLs

6

DiPOLE 100-X properties

DiPOLE100

- □ UK contribution in kind
- □ EPSRC Oxford University
- □ STFC Central Laser Facility
- Designed, built and commissioned at CLF, Rutherford Appleton Laboratory, UK
- Decommissioned, packaged & shipped to European XFEL

□ >100 J @ 10 Hz

- 2-15 ns pulse
- pulse shaping
- \Box 2 ω conversion
- □ delivery mid 2018
- □ User operation in 2019

European XFEL

7

HED hutch overview

9

Conceptual Design Report: Dynamic lasesr compression at European XFEL

CDR published: go to XFEL HED website, under "documentation" http://www.xfel.eu/research/instruments/HED

http://dx.doi.org/10.22003/XFEL.EU-TR-2017-001

XRD Perspectives at HED, European XFEL

DiPOLE 100-X laser (HIBEF / STFC) with 100 J at 10 Hz, 2ω \rightarrow go beyond current repetition rates of one shot every few minutes

- Photon energies up to 25 keV \rightarrow collapse *q*-space forward
- DiPOLE focus >100µm
- Pulse shaping with few-% accuracy
- Large area detector
 → Increase *q*-range
 → texture analysis

Proposal by HIBEF UC for a dedicated chamber:

courtesy HP Liermann, J Eggert et al., Draft CDR on Dynamic Compression European XFEL

Call for proposals

Timeline not entirely fixed, best estimate currently:

First call for SASE1 instruments (FXE and SPB/SFX)

- ▶ published 23 Jan 2017
- ► Experiments in second half 2017
- Second call + 6 months
- ▶ published June-August 2017
- Experiments in first half 2018
- SASE1 + SASE3 instruments
- SASE2 (HED, MID) depends on performance

Third call + 6 months

- Published in Dec 2018 if possible
- For second half of 2018 → all instruments

Fourth call + 6 months most likely with all HIBEF lasers (depending on perfomance)

XFEL may ask for feedback by SAC for the first intervals for calls

3rd and 4th generation light sources - Competitive or complementary?

	<u>European XFEL, HED</u>	<u>ESRF, HPLF</u>
Pulse length	< 100 fs	100 ps
Energy range	5 - 25 keV	5 keV - 25 keV - > 60 keV
# of photons/pulse	10^{13} - 10^{12} on target, focused	10 ¹⁰ -10 ⁹ -10 ⁸ from source, w/o optics
bandwidth	SASE and seeded (~0.1% bw)	~3% bw - ~1% bw

XFEL: observing ultrafast phase transitions

how fast is a phase transition?

- magnetic phase transitions may occur on the order of 100 ps or quicker
 - (only electronic response, spin state changes)
- Crystallographic twinning may occur of order < 100 ps (work by Sebastien Merkel et al.)
- structural changes might also be as fast as 100 ps (of order phonon dynamics)
 - Fastest phase transition = typical phonon period example Bi (467 fs, electronic) XRD oscillations
 - ► References:
 - · Work by Norimasa Osaki & Marion Harmand
 - proton heating results in fast phase transition work by Pelka et al., PRL **105** (2010): melting < 18 ps
 Y. Sentoku et al., Physics of Plasmas 14, 122701 (2007)
 P. K. Patel et al., Phys. Rev. Lett. 91, 125004 (2003)
- if a (transient) phase lives for less than 100 ps, measurements are blurred due averaging over different states when done at synchrotron

XFEL: transient phases, 90° geometry XRD, PCI

For strong (fast) shocks, 100 ps could be on the (long) edge for hydrodynamic evolution in strong shocks (ramps might be safe).

- 90° geometry (90° between shock propagation and x-rays)
 Diagnostics could be phase contrast imaging (PCI) and/or diffraction (XRD) *Nagler, Schropp et al., RSI 87, 103701 (2016)*
 - Shock speed 10 km/s = 1 nm/ 100 fs = 1 μm/ 100 ps
 - sharpness and fringes in shock front may be blurred
 - Fine structure in shock front (denting, instability growth,) might be washed out
- Additionally, PCI might need the higher photon number and coherence of an XFEL → talk by A. Schropp

Schropp et al., Sci. Rep 2015, 5, 11089

European XFEL

Synchrotron: XRD, XANES

XRD \rightarrow generally better done at synchrotrons

- Higher photon energy than 25 keV (current limit at XFEL.EU)
- large detectors that are already available.
- However, XFELs have advantages for:
 - Combine XRD with collective (plasmon) IXS → need < 10 keV photon energy</p>
 - Transient and/or ultrafast phase transitions, high strain rates (strong shocks)

Do we benefit from "snapshots" in shorter than a phonon period?

- XANES \rightarrow generally better done at synchrotrons
 - wider bandwidth 1-3% b.w. (after upgrade)
- Shot-to-shot reproducibility
 - no SASE spikes, XFELs lack good incident spectrum monitor
- Expert for XANES at XFELs \rightarrow talk by Marion Harmand

Emission spectroscopy

Typically, the X-ray K β line shapes are analyzed

- x-ray emission scan of K-edges (pumping, IPD)
 Narrow bandwidth → XFEL
 - x-ray resonant / two-photon (DCH, beat the Auger clock)
 inigh intensity & short pulses → XFEL

Potential challenge for both facilities:

- fluorescence/IXS from plasma might be stronger than X-ray emission
 - \rightarrow More photons at XFEL might be an advantage

IXS Plasmon Perspectives at HED

Seeding available, 4-bounce monochromator available, $\Delta E \sim 1 eV$

HAPG spectrometers on curved rails to scan scattering angles

Measure plasmon dispersion in compressed matter ~ 1Mbar

Distinguish between collision models and local field corrections

hrIXS perspectives at HED, European XFEL

Dynamic ion structure factor allows accessing

- disipative processesviscosity
- thermal conductivity
- diffusive modes at $\Delta k=0$

European XFEL

Courtesy P. Mabey et al., under review

x-ray pump-probe – fs dynamic response

HED x-ray beam split & delay line (SDL) – wavefront division

Multi-layer mirrors --- Variable delay up to ~23 ps (5 keV), ~4 ps (15 keV), 2 ps (20 keV)

S. Roling, H. Zacharias, et al., SPIE conf 8504, 850407 (2012) BMBF project 05K10PM2 University of Münster

- → measure ultrafast dynamic response (electron-electron, electron-ion equilibration)
- \rightarrow with 2 subsequent fs x-ray pulses launched into sample
- \rightarrow reach astrophysically relevant states at $\rho > \rho_0$ with pre-compressed samples
- → conductivity of deeper layers of Jupiter, conductivity of eath core-mantle boundary

Summary

European XFEL, HED instrument:

- IC1 for very flexible setups, IXS, 90° etc.
- HIBEF IC2 as standard high quality XRD platform
 - concept similar in scope the XRD part of the HPLF proposal.

Synchrotron cases:

- XRD
- XANES

XFEL cases:

- Collective IXS: plasmons, ion acoustic waves (hrIXS)
- Emission spectroscopy
- Repetition rate (need: refreshing targets & ablator concept)
- Ultrafast X-ray pump-probe
- XRD in 90°, phase contrast imaging

The current HED group at European XFEL

Group Leader HED Scientists

Dynamic compression at XFELs

Ulf Zastrau	Motoa Nakat	iki sutsumi	Karen Appel	Seb Göd	astian de	Zuzana Konôpkov	á Mikako	Thomas Preston (7/'17	N.N.	N.N.	Gerd Priebe
Engineers				Technic	cians/N	lech's	Externally	funded Pos	tDocs / Ph	.D.s / Guest	Scientists
lan A Thorpe	Andreas Schmidt	Konstal Sukhar	ntin nikov	Thomas	Eike n Mart	tens	Emma McBride	Philipp Sperling	Wolfgang Morgenroth	Nicole Biedermann	Bolun Chen
							Volkswagen Foundation	Humboldt Foundation	BMBF	DFG	CAEP
Coordi	nator	HIBEF	UC st	aff at Eu	ropear	N XFEL					

Coordinator

Bähtz

Alexander Pelka

N.N.

N.N.

Toma Toncian Monika (HIBEF lasers) Toncian **HIBEF at HZDR:**

Klaus Knöfel

Wolfgang Seidel

Jörn Dreyer, ...

Laser Group

SASE2 milestones II/II

Early 2018 Commission the tunnel and optics hutch devices with X-rays

- up to the beam stop between optics and experiments hutch
- HED tunnel devices: CRLs, monochromator, split-and-delay line
- HED optics hutch: slits, attenuators, CRLs, spectrometer, monitors
- Spring 2018 mechanical setups around the IC1 commissioning in full swing
 - Slits, differential pumping stages from IC1, laser beam transport
 - step-by-step commissioning with x-rays, starting from the optics hutch up to beam stop
 - rooms will be interlocked frequently and access is limited
- Delivery of multi-100-TW class laser and DiPOLE laser to HED laser room
 - Unpacking, setup and full-scale commissioning will take a minimum of 6-9 months.
 - Summer 2018: start of early user operation
 - Experiments in IC1, x-ray only (plus split-and-delay unit).
- End-2018: as soon as the pump-probe (PP) laser (up to 2.5 mJ short pulse at 800 nm / up to 40 mJ at 1030 nm @ 1 ps) is available, this laser can be commissioned at HED and thereafter provided for user experiments.
- 2019: Tentatively, we do not expect availability of the large HIBEF laser systems before 2019.
 HED instrument fully operational spring 2019.

🚾 🚾 💻 European XFEL