High Pressure X-ray Diffraction Experiments on the Omega and NIF Laser Facilities <u>+ future experiments at the ESRF</u>

Raymond F. Smith Lawrence Livermore National Laboratory

Jon Eggert, Ryan Rygg, Federica Coppari, Marius Millot, Amy Jenei, Rick Kraus, Dayne Fratanduono, and others (LLNL) June Wicks, Thomas Duffy (Princeton Univ.)

Recent experiments on Omega have focused on determining the high pressure crystal structure of MgO and FeSi alloys

We have developed ns x-ray diffraction platforms on the Omega and NIF Laser facilities

1 TPa = 1000 GPa = 10 Mbar

image plates

X-ray Spectrum emitted in 4π

10¹¹ - 10¹² photons incident on sample 3.5% bandwidth

Main sources of noise

PXRDIP BOX

Hard X-ray emission from He-α source

Thermal X-ray emission from drive plasma (scales with Laser Intensity, plasma volume and duration)

Experimental setup

Pressure Determination using reflecting shock in quartz

Target design for ramp-compression of FeSi

Using this technique we have obtained diffraction data from solid state FeSi alloys up to 1300 GPa

In recent years X-ray diffraction experiments on Omega and NIF have been very successful in determining high-pressure crystal structures on materials with <u>high symmetry</u> phases.

X-ray diffraction experiments on Omega/NIF and ESRF

- X-ray source
- Required Laser Spot Size
- Signal-to-Noise
- Achievable sample pressures
- Shot Rate

Energy Needed to achieve a given pressure scales with Laser Intensity

For Shock Sample with a CH ablator: $P_{CH} \sim I_{LASER}^{0.8}$

For Ramp Compression Sample with a diamond ablator: $P_{Diamond} \sim I_{LASER}^{0.7}$

Energy Needed to achieve a given pressure scales with Laser Intensity

For Shock Sample with a CH ablator: $P_{CH} \sim I_{LASER}^{0.8}$

For Ramp Compression Sample with a diamond ablator: $P_{Diamond} \sim I_{LASER}^{0.7}$

NIF Laser Spot

Omega-EP 1.1 mm phase plate

Future ESRF 250 µm phase plate

Energy Needed to achieve a given pressure scales with Laser Intensity For Shock Sample with a CH ablator: $P_{CH} \sim I_{LASER}^{0.8}$ For Ramp Compression Sample with a diamond ablator: $P_{Diamond} \sim I_{LASER}^{0.7}$

Energy Needed to achieve a given pressure scales with Laser Intensity For Shock Sample with a CH ablator: $P_{CH} \sim I_{LASFR}^{0.8}$ For Ramp Compression Sample with a diamond ablator: $P_{Diamond} \sim I_{LASER}^{0.7}$ **Omega-EP NIF Laser Spot** Future 1.1 mm phase **TARDIS tiled spot ESRF** 1.5 plate 250 µm 0.1 Distance (mm) phase **Future ESRF** plate Energy ~ 100-200 J in 4-10 ns @ 527 or 1054 nm Shot Rate = 1 shot/1 minute Max Sample Pressure 500+ GPa -1.0 -1.5-Distance (mm)

Laser spots are needed on Omega and NIF to accommodate larger diameter x-ray beams. This improves the signal-to-noise in the diffraction pattern

NII Lasei Spot	
1.5-	TARDIS tiled spot
-0.1 Distance (mm) -0.0 - -0.1 - -0.1 -	400 μm x-rays spot, ns duration
-1.5-	
	-1 0 1 Distance (mm)

NIE Lacor Spot

Omega-EP 1.1 mm phase plate

20 μm x-rays ? 100 ps duration Laser spots are needed on Omega and NIF to accommodate larger diameter x-ray beams. This improves the signal-to-noise in the diffraction pattern

New 100-J class, pulse-shaped lasers are being built at X-ray sources around the world.

Pulse shaping is available on LCLS/MEC albeit with less fidelity

MEC Laser – April 2014, 25 repeat laser shots

1 TPa = 1000 GPa = 10 Mbar

Pulse shaping at APS-DCS

1) Quickly map out phase space using variable pulse shapes

- 1) Quickly map out phase space using variable pulse shapes
- 2) low-signal phenomena
 - a) Low Symmetry Phases

- 1) Quickly map out phase space using variable pulse shapes
- 2) low-signal phenomena
 - a) Low Symmetry Phases
 - b) Liquid diffraction

- 1) Quickly map out phase space using variable pulse shapes
- 2) low-signal phenomena
 - a) Low Symmetry Phases
 - b) Liquid diffraction
 - c) EXAFS

In recent years X-ray diffraction experiments on Omega and NIF have been very successful in determining high-pressure crystal structures on materials with <u>high symmetry</u> phases.

In recent years X-ray diffraction experiments on Omega and NIF have been very successful in determining high-pressure crystal structures on materials with <u>high symmetry</u> phases.

With compact high power laser systems ESRF and other x-ray sources offer exciting possibilities for much improved single-to-noise measurements of high-pressure crystal structure on more <u>complex</u> <u>materials</u>.

In recent years X-ray diffraction experiments on Omega and NIF have been very successful in determining high-pressure crystal structures on materials with <u>high symmetry</u> phases.

With compact high power laser systems ESRF and other x-ray sources offer exciting possibilities for much improved single-to-noise measurements of high-pressure crystal structure on more <u>complex</u> <u>materials</u>.

Requirements

- Need good phase plates
- Laser Pulse shaping
- High Rep rate targets
- Good VISAR and Pyrometry diagnostics
- Equation of state and hydrocode development to understand target conditions

Backup slides

1 TPa = 1000 GPa = 10 Mbar

Experiment setup on the Stanford LCLS-MEC hutch

Recent MEC diffraction publications: Gleason *et al.*, Nat. Comm. (2015) Gorman *et al.*, Phy. Rev. Letts. (2015)

- 1) Quickly map out phase space using variable pulse shapes
- 2) low-signal phenomena
 - a) Narrow-bandwidth diffraction
 - b) Liquid diffraction
 - c) EXAFS
- 3) Make movies of transitions using variable time delays over many shots

2b)

May need to average ~100 shots to obtain high-quality liquid diffraction

Equilibrium thermodynamics is described by an equation-of-state (EOS) surface

1 TPa = 1000 GPa = 10 Mbar

Future experiments using the ESRF laser

Laser

100-200 J, 4-10ns, shaped, 1shot/minute, 1053nm & 528 nm

X-rays

Phase I, the laser will be coupled to a XAS beamline (5-27 keV). Phase II,, we hope to add a second beamline with XRD, XRI and XES (~ 20 - 60 keV), pink beam (1-2% bandwidth), ~1x10¹¹ photons per X-ray pulse in 100 ps.