Dynamic material response
under high strain rates:
Phase transition dynamics



Iron a-e transition

i/ Transition from body cubic center to
hexagonal closed packaged structure at
13 Gpa under static compression

Has been observed under both dynamic
and static compression
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It was highly unlikely that a
transition with a change In
crystal structure could occur
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<7 microseconds.
P. Bridgman (Prix Nobel 1946), Collected papers
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Magnetic compression
~300 ns, ~500 p iron
Laser compression
~5ns, ~¥10 um iron

Smith et al, J. Appl. Phys 114, 223507
Bastea et al, Appl. Phys Lett 95, 241911

In-situ diffraction of
shock compressed iron
with laser-driven x-ray
source

L : Kalantar et al. PRL95, 075502
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Experimental setup

Visar measures
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Experimental results
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With increasing loading rate, the transition signature
moves to higher pressures and the signature gets shorter



Rear surface velocity profiles

Front side Rear side * Obtain sound speed

from profiles
* Particle velocity
corresponds to pressure
— Infinite slow * Length of the prOf”e
/ ’ e corresponds to change
in sound velocity

—slow
Fast

- >
Time

—— Applied ramp

Sample needs to be thick enough to separate waves with different sound
speeds, but signature is damped while propagating throug target
» Good thickness around 10 pum



From sound speed to phase transition

4 Generally, sound speed

increase with pressure

=== infinitely slow

— et Sound speed decreases

slow

—fast at phase transition

Sound speed

deg
dt

d(a—e€)

<0 ~—2

Pressure

The plateau length and pressure depends on the sum of sound speed
change by loading rate and phase transition dynamics



Simulation

Hydrodynamic simulations using SHYLAC code

—

Equation of state for phase 1 (a) and phase 2 (e)
with mixing law

V=(1-X)V,+XV, E=({1-XE,+XE,

Kinetic model X(t) = f(AG, ...)

Pressure ramp calculated from laser plasma
interaction using MULTI code



Two kinetics models tested

Hayes

* Transition rate proportional
to old phase material and
difference in free energie

X() = (1-X)f(AG)
f(AG) = 7% aAG ...
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X(t)=1—exp [—4—n (£)4]

Formation of germs of the
new phase, which grow at
constant velocity

12 \6

Although the transition time is
similar, the models will lead to
different plateau pressures and
lengths.

A more complicated f(AG) can result
in a curve similar to Avrami

Smith et al, J. Appl. Phys 114, 223507



Compare simulation and experiment
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Avrami model fits measured profiles for different strain rates with a
constant characteristic time 0
» lsocinetic regime



Comparing with Hayes model

0.9

_| I I |Ex|p|.| I I I I I |
. Avrami ——

08 [
1.5 |_Hayes Ins -

) C
E _ Hayes 3ns
F-
S 1 86x10sl = 16 1.8 2 22 2.4
T / ‘
s I _
.o -
gos[ ]
Ay = /_,._
i A P 3 7.1
0 [_""f:’-—‘-‘-"‘—" it 4.8x10's h
| L1 | L1 L1 | I | | L1 L1 | I | | L1 L1 | N I |

0 1 2 3 4 5 6 7
Time [ns]

Difference between models only at high strain rates significant,
although X(t) is very different



Testing different transition times
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1 ns transition time reproduces best the plateau



Open gquestions

* Studying phase transitions with velocity profiles
remains indirect

 Measurements cannot discriminate at low strain
rates R

» Probe phase transition with x-rays |
 Temporal resolution ~100 ps
* Possibility for changing strain rates (profiles laser)
 Moderate pressures (100-200 J Laser energy)



Similar applications

Phase transition studies for dressing/conditioning of material surfaces (A.
Zerr): Generation of a superhard layer of high-pressure phase y-Si;N, on
the surface of a bulk piece made of a hard and fracture resistant a- or -
Si;N, forming at 1 atm. We need time-resolved in-situ XRD measurements
during shock compression in order to understand whether the transition
takes place at all and how y-Si;N, can be quenched to ambient conditions.



ACO-CHOCOLAS .

_ Solid Material behaviour
Grope derechercre @) * at High Strain Rate (> 10% s)

* Under shock produced by Laser

* From basic science to industrial applications

« Material behaviour under shock

 Material transformation
* (LSP-new material)

 Damaging and interface
(LASAT)



ACO-CHOCOLAS *  Bio-composite
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*  Micro-jetting (RX-imaging)

* Glass - equation of state
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ACO-CHOCOLAS
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Conclusion

* Laser ramp compression a valuable tool to
study phase transition dynamics

e Studies on iron suggest Avrami type phase
transition with a characteristic time of 1 ns

* In-situ x-ray diagnostics are necessary to
better constain differen models
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