

Magnetism and X-ray dichroism

- Introduction to X-ray Magnetic Circular Dichroism
- Experimental aspects: ID12 beamline at the ESRF
- Selected Results
 - Single molecular magnets
 - **Orbital magnetic moment in actinides**
- Conclusions

Nobel Prize in Physics 1994: B. N. Brockhouse and C. G. Shull <u>Press release by the Royal Swedish Academy of Sciences:</u>

"Neutrons are small magnets..... (that) can be used to study the relative orientations of the small atomic magnets. the X-ray method has been powerless and in this field of application neutron diffraction has since assumed an entirely dominant position. It is hard to imagine modern research into magnetism without this aid."

Cliff Shull

1994 Nobel Prize in Physics

Bert Brockhouse

The Agilent Technologies Europhysics Prize for outstanding achievement in condensed-matter physics in 2000: P. Carra, G. Schütz and G. van der Laan

"for their pioneering work in establishing the field of magnetic X-ray dichroism. ...it is possible to obtain information about the material that cannot be obtained with traditional measurements."

ESRF

Nowadays:

X-ray magnetic circular dichroism (XMCD) is considered to be one of the most important discoveries in the field of magnetism research in the last two decades. It is hard to imagine modern research into magnetism without the aid of X-ray spectroscopy.

Synchrotron Radiation News November/December 2013 • Vol. 26, No. 6

Magnetic Materials **Probed** with Polarized X-ray Spectroscopies

"Magnetism, as you recall from physics class, is a powerful force that causes certain items to be attracted to refrigerators."

- Dave Barry

APPLICATIONS OF PERMANENT MAGNETS

Magnetic resonance Imaging

High-Efficiency Motors for Energy-Efficient Homes

Computing and communication technologies

Rare Earth permanent magnets help make technologies more effective and more efficient.

otron ESRF

Spin and orbital magnetic moments are coupled via spin-orbit interaction, which is the key ingredient in magneto-optics, magnetocrystalline anisotropy, magnetic chirality, etc

The experimental technique capable to measure separately SPIN and ORBITAL moments of an atom is X-ray Magnetic Circular Dichroism (XMCD)

Difference in absorption cross-section of circularly polarized X-rays for sample magnetization either parallel or antiparallel to the X-ray wavevector

ESRF

X-RAY INTERACTIONS WITH MATTER

Photon could be

- absorbed (photoelectric effection)
- elastically scattered
- inelastically scattered

below 200 keV absorption dominates

X-RAY ABSORPTION SPECTROSCOPY

The European Synchrotron

X-RAY ABSORPTION SPECTROSCOPY

Page 14 A. Rogalev | X-ray dichroisms | JABS10, Bordeaux | 6-7 Juin 2016

The European Synchrotron ESRF

X-RAY INTERACTIONS WITH MATTER

Photon could be

- absorbed (photoelectric effect
- elastically scattered
- inelastically scattered

For magnetism research, the key word - **POLARIZATION**

REMINDER: LIGHT AS A EM FIELD

POLARIZATION OF LIGHT

Right circular

Lł

 $\boldsymbol{\epsilon} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$ $\boldsymbol{\epsilon} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i\\0 \end{pmatrix}$ $\boldsymbol{\epsilon} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i\\0 \end{pmatrix}$

Note: the phase conventions are highly variable

X-RAY MAGNETIC CIRCULAR DICHROISM

The first serious approach to the problem of absorption of circularly polarized X-rays

PHYSICAL REVIEW B

VOLUME 12, NUMBER 11

1 DECEMBER 1975

Calculation of the M_{23} magneto-optical absorption spectrum of ferromagnetic nickel

J. L. Erskine*

Department of Physics, University of Illinois, Urbana, Illinois 61801

E. A. Stern[†]

Department of Physics, University of Washington, Seattle, Washington 98195 (Received 28 April 1975)

The M_{23} magneto-optical absorption spectrum of ferromagnetic nickel is calculated using an approach similar to the component state-density method that has been successfully used in obtaining valence-band emission and absorption x-ray spectra of metals. The M_{23} magneto-optical effects result predominantly from spin-orbit splitting of the 3p core state in conjunction with the final *d*-state spin polarization. The calculated spectrum exhibits features that are directly related to electronic structure parameters including the 3p core spin-orbit splitting, and the unfilled *d*-band spin polarization. Temperature variations in the magneto-optical structure can be used to determine separately the exchange-splitting variation and spin-wave excitation contributions to the decrease in the magnetization. Experimental verification of these predictions should provide insight into the applicability of the Stoner model to ferromagnetic nickel and may be helpful in resolving some of the apparently conflicting results of other experimental probes of the spin polarization near the Fermi level in nickel.

Two-step model

TWO STEP MODEL OF XMCD

Absorption of a right circularly polarized photon electric dipolar transitions $p \rightarrow d$ ($\Delta m_l = +1$; $\Delta m_s = 0$)

Excited photoelectrons are spin polarized

TWO STEP MODEL OF XMCD

Exchange splitting of the valence band is driving the second step

FIRST EXPERIMENTAL OBSERVATIONS

First experimental evidence

XMCD is a new approach to study ferromagnetic system

APID COMMUNICATIONS			(a)	L2,3 PHOTOABSORPTION OF NIC
PHYSICAL REVIEW B	VOLUME 42, NUMBER 11	15 OCTOBER 1990-I	120 – ≿	i t t
	Rapid Communications		ON INTENSI	† ↓
Rapid Communications are intended treatment both in the editorial office an printed pages and must be accompanied	for the accelerated publication of important new resu d in production. A Rapid Communication in Physical 1 by an abstract. Page proofs are sent to authors.	lts and are therefore given priority Review B should be no longer than 4	TGROSAR 40 -	
Soft-x-ray m	agnetic circular dichroism at the $L_{2,3}$ edg	es of nickel	o	
Aŭ	C. T. Chen, F. Sette, Y. Ma, and S. Modesti & T Bell Laboratories, Murray Hill, New Jersey 0797- (Received 2 March 1990)	1	4) - ++) MAGNETIC CIRCULAR DICHRC
Magnetic circular or romagnetic nickel by sity ratio between the simple exchange-split- spectra, are also obset feasibility of MCD m	ichroism (MCD) has been observed at the $L_{2,3}$ abso use of circular-polarized soft-x-ray synchrotron radiatio L_2 and the L_3 edges is found to differ appreciably from valence-band model. Fine MCD features, imperceptib ved and a tentative interpretation is given. This worf assurements in the soft-x-ray region, provides a new a	rption edges of fer- n. The MCD inten- that predicted by a le in the absorption c, demonstrating the poroach to study 3d	-8- - 4- - 4-	L ₂ B'
and 4f ferromagnetic tions.	systems with their respective dipole-permitted $2p \rightarrow 3d$	and $3d \rightarrow 4f$ transi-		850 870 8 PHOTON ENERGY (av)

XMCD SUM RULES

Sum rules relate experimental XMCD spectra to the spin and orbital moments

ESRF

CHARGE SUM RULE

integrated whitelines intensity is measure for number of holes in the valence band => valence state

A.F. Starace, Phys. Rev. B5, 1773 (1972)

Page 23 A. Rogalev | XMCD | VI Euro-Asian Symposium «Trends in Magnetism» | 15-19 August 2016

The European Synchrotron

ESRF

APPLICATION OF THE XMCD SUM RULES FOR THE $L_{2,3}$ EDGES

integrated spectra related to spin and orbital magnetic moments in the ground state B.T Thole et al., Phys. Rev. Lett. 68, 1943 (1992)

Page 24 A. Rogalev | XMCD | VI Euro-Asian Symposium «Trends in Magnetism» | 15-19 August 2016

ELEMENT SELECTIVITY OF XMCD

<u>Ni₂ / Pt₂ multilayer</u>

F. Wilhelm et al., Phys. Rev. Lett., 85, 413 (2000)

RESULTS

• Ni magnetic moments: $\mu_S^{3d}=0.35 \ \mu_B/atom$ $\mu_L^{3d}=0.038 \ \mu_B/atom$ • Pt induced magnetic moments: $\mu_S^{5d}=0.14 \ \mu_B/atom$ $\mu_L^{5d}=0.03\mu_B/atom$

ESRF

SENSITIVITY OF XMCD: A SINGLE SURFACE-ADSORBED ATOM

Page 27

Ho atoms on a two-monolayer-thick MgO film deposited on Ag(100)

INDUCED MAGNETISM ON GOLD ATOMS

PHYSICAL REVIEW B 69, 220404(R) (2004)

Magnetic moment of Au at Au/Co interfaces: A direct experimental determination

F. Wilhelm,¹ M. Angelakeris,² N. Jaouen,¹ P. Poulopoulos,^{3,6} E. Th. Papaioannou,^{4,2} Ch. Mueller,⁴ P. Fumagalli,⁴ A. Rogalevi,¹ and N. K. Flevaris,² ¹European Synchrotron Radiation Facility (ESRF), Boite Postale 220, 38043 Granoble, France ²Department of Physics, Artistofie University of Thessaloniki, 54124 Thessaloniki, Greece ³Materials Science Department, University of Patrax, 5049 Patrax, Greece

⁴Institut f\u00fcr Experimentalphysik, Freie Universit\u00e4t Berlin, Arnimallee 14, D-14195 Berlin-Dahlem, Germany (Received 17 January 2004; revised manuscript received 22 April 2004; published 16 June 2004) PHYSICAL REVIEW B 77, 224414 (2008)

Au and Fe magnetic moments in disordered Au-Fe alloys

F. Wilhelm,¹ P. Poulopoulos,^{2,6} V. Kapaklis,^{2,3} J.-P. Kappler,⁴ N. Jaouen,^{1,1} A. Rogalev,¹ A. N. Yaresko,⁵ and C. Politis,^{3,6} ¹European Synchrotron Radiation Facility (ESRP), B. P. 220, 30843 Grenoble, France ³Materials Science Department, University of Patras, SciO4 Patras, Greece ³School of Engineering, Engineering Science Department, University of Patras, SciO4 Patras, Greece ⁴Institut de Physique et Chimie des Matcharas de Straburgue (IPCMS), 23 read et Locst, 67033 Straubourg, France ⁵Max Planck Institute for the Physics of Complex Systems, D-01187 Drenden, Germany (Received 18 January 2008; revised manuscript received 27 April 2008, published 9 June 2008)

PRL 109, 247203 (2012) PHYSICAL REVIEW LETTERS

Strong Paramagnetism of Gold Nanoparticles Deposited on a Sulfolobus acidocaldarius S Layer

week ending 14 DECEMBER 2013

J. Bartolomé,^{1,2,*} F. Bartolomé,^{1,2} L. M. García,^{1,2} A. I. Figueroa,^{1,2} A. Repollés,^{1,2} M. J. Martínez-Pérez,^{1,2} F. Luis,^{1,2} C. Magén,^{2,*} S. Selenska-Pobell,⁴ F. Pobell,⁴ T. Reitz,² R. Schönemann,⁴ T. Herrmannsdörfer,⁴ M. Merroun,³ A. Geisler, F. Wilhelm,⁶ and A. Rogalev⁶

¹Instituto de Cinecia de Materiales de Antgela (ICMA), CSIC—Ubiversidad de Zangzoa, E-50009 Zangzoa, Spain ²Departamento de Física de la Materia Condensida, Universidad de Zangzoa, E-50009 Zangzoa, Spain ³Laboratiro de Microscopia, Avanzadas (IAM), Instituto de Nanciencia de Aragia (INA)–ARMID, Universidad de Zangzoa, E-50015 Zangzoa, Spain ⁴Institute of Resource Ecology can Dreaden High Magenci Field Laboratory, Ichelmistr, Zentrum Dresden-Rossendorf,

²Institute of Resource Ecology and Dreafan High Magnetic Field Laboratory, Helmholt-Zentrum Dresden-Rossendo D-0123 Dreadan, Germany ⁵Department of Microbiology: University of Granada, E-18071 Granada, Spain ⁶European Synchrotron Radiation Faxility (ESRF)- BP 220, F-38043 Grenoble, France (Received 28 June 2012; published 10 Docember 2012)

 $[\]mu_{tot}^{Au} \approx 0.051 \mu_B / atom$ (T = 2.3K; H = 17 T)

- Introduction to X-ray Magnetic Circular Dichroism
- Experimental aspects: ID12 beamline at the ESRF
- Selected Results

Single molecular magnets

Orbital magnetic moment in actinides

Conclusions

Quantity to measure: $\Delta \mu = \mu^+ - \mu^-$

μ⁺, μ⁻ => Absorption cross-sections for CP X-rays with
(+) helicity parallel to the sample magnetization
(-) helicity antiparallel to the sample magnetization

Source of monochromatic circularly polarized X-rays

- □ Magnetic field to magnetize a sample
- Highly performing X-ray detectors

The best possible at the 3rd generation synchrotron radiation facilities

SOURCE OF CIRCULARLY POLARIZED X-RAYS

Page 31

ESRF BEAMLINE ID12

2.05 keV - 15 keV

IA	1			K	- 00	dao											0
1 H	п				- 50	Jye						TTT 4	T 7.4	X 7.4	Х/Т.А	57 11 A	He
1.008		l			- ec	dae	S					шA				VПА	4.003
J	Bo			_								9 2	ĥ	Ń	ဂိ	9	No
6.941	9.012			M	- 6	dae	S					10.81	12.01	14.01	16.00	19.00	20.18
11	12					490						13	14	15	16	17	18
Na	Mg	ппр	пл	37D	хло	хлтр		ултр		тр	TTD	A	Si	P	S	CI	Ar
22.99	24.31	шв	IVD	V D	VIB	νцв	0.0	VШШ		Ш	ШВ	26.98	28.09	30.97	32.06	35.45	39.95
19	20	21 8 a	4	23	24	25 M.m.	Z6 Ea	6	28 Mi	29	30 7m		32	33	34 C o	30 Dr	յն Մ.թ
39.10	40.08	3C 44.96	47.90	50,94	52.00	54.94	55.85	58,93	58.70	63.55	65.38	69.72	72.59	74.92	78.96	DI 79.90	NI 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.47	87.62	88.91	91.22	92.91	95,94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57 *	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
LS 132.0	Ba	La	HT 178.5	180.9	183.0	186.2		192.2	195 1	AU 197.0	HG	204.4	PD 207.2	BI	(209)	AL (210)	(222)
87	88	89 **	104	105	106	107	108	109	133.1	107.0	200.0	204.4	207.2	203.0	(203)	(210)	(222)
Fr	Ra	Ac	Rf	Ha	Unh	Uns		Une									
(223)	(226.0)	(227)															
			* 58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0	
			~ 90 TL	91 D-	92	93	94	95	96	97	98	99		101 101 - J	102	103	
			232.0	(231)	238.0	(244)	(242)	AII (243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
			202.0	(2017	200.0	12.17	12.27	(2.10)	(2.1.)	(~)	(2017	(202)	(2017	(200)	(200)	(200)	1

HIGH FIELD XMCD END-STATION

H < ± 17 Tesla, T > 2.0 K

Typical sample size 0.65mm X 0.80mmx0.12mm

Aldred et al., PRB10, 1011(1974) Wilhelm et al., PRB 88, 024424 (2013)

X-ray Magnetic Circular Dichroism is a unique tool to study microscopic magnetic properties

- Element-specific and orbital-selective magnetometry tool
- Sensitive to the electronic structure (valence state, symmetry,...)
- Possibility to extract Spin and Orbital magnetic moments of absorbing atoms only
- Small size samples (focusing the x-ray beam)
- Single crystals, polycrystalline and amorphous materials, thin films, nanoparticles, monolayers, ad-atoms, ...

Introduction to X-ray Magnetic Circular Dichroism

- Experimental aspects: ID12 beamline at the ESRF
- Selected Results

□ Single molecular magnets

Orbital magnetic moment in actinides

Conclusions

MAGNETIC STRUCTURES

4D/5D IONS IN SINGLE MOLECULAR MAGNETS

Chem Soc Rev

Dynamic Article Links 🕟

www.rsc.org/csr

CRITICAL REVIEW

Molecular magnetic materials based on 4d and 5d transition metals⁺

Xin-Yi Wang,*^{ab} Carolina Avendaño^a and Kim R. Dunbar*^a

Radial Distribution

EXOTIC MAGNETIC PHENOMENA IN "IRIDATES"

{ [nO _6} ⁸⁻	Sr Ir0 ₄
	also:
Electronegativity	(pyrochlores)
Mass and size	(honeycomb)
Redox-innocence	(hyperkagome)
PRL 114, 096403 (2015) PHYSICA	L REVIEW LETTERS 6 MARCH 2015
$J_{eff} = 1/2$ Mott-Insut	ating State in Rh and Ir Fluorides
Turan	Birol and Kristjan Haule
Department of Physics and Astronomy	Rutgers University, Piscataway, New Logy 08854, USA
(Received 17 Au	gust 2014; published 5 March 2015)
Kim et al. <i>Phys. Rev. Lett.</i> 2008 , <i>101</i> , 076402	Chun <i>et al. Nat. Phys.</i> 2015 , <i>1</i> 1, 462
Kim et al. <i>Science</i> , 2009 , <i>323</i> , 132	Chen <i>et al. Nat. Commun.</i> 2015 , <i>6</i> , 6593
Machida et al. <i>Nature</i> 2010 , <i>463</i> , 210	Kim et al. <i>Nat. Phys.</i> DOI: 10.1038/NPHYS3503
Modic et al. <i>Nat. Commun.</i> 2014 , <i>5</i> , 4203	Zhao et al. <i>Nat. Phys.</i> DOI: 10.1038/nphys3517

ESRF

GETTING SOME [MF₆]^{X-}

K. Pedersen et al, Angew. Chem. Int. Ed. 2014, 53, 1351

SOME INDICATIONS OF ORBITAL MAGNETISM

XMCD OF [IrX₆]²⁻ COMPLEXES

nature

ARTICLE

Received 21 Mar 2016 | Accepted 7 Jun 2016 | Published 20 Jul 2016

DOI: 10.1038/ncomms12195 OPEN

Iridates from the molecular side

Kasper S. Pedersen^{1,2,3,4}, Jesper Bendix⁵, Alain Tressaud^{3,4}, Etienne Durand^{3,4}, Høgni Weihe⁵, Zaher Salman⁶, Thorbjørn J. Morsing⁵, Daniel N. Woodruff⁷, Yanhua Lan⁸, Wolfgang Wernsdorfer⁸, Corine Mathonière^{3,4}, Stergios Piligkos⁵, Sophia I. Klokishner⁹, Serghei Ostrovsky⁹, Katharina Ollefs^{10,†}, Fabrice Wilhelm¹⁰, Andrei Rogalev¹⁰ & Rodolphe Clérac^{1,2}

$$\langle L_z \rangle \propto I_{L_3}^{\text{XMCD}} + I_{L_2}^{\text{XMCD}} \\ \langle S_{\text{eff}} \rangle \propto I_{L_3}^{\text{XMCD}} - 2 \times I_{L_2}^{\text{XMCD}}$$

 $[IrF_6]^{2-} [IrCl_6]^{2-} Sr_2IrO_4$

$\langle S_z \rangle$	0.13	0.15	0.15
$\langle L_z \rangle$	0.77	0.65	0.63

Introduction to X-ray Magnetic Circular Dichroism

- Experimental aspects: ID12 beamline at the ESRF
- Selected Results

Single molecular magnets

□ Orbital magnetic moment in actinides

Conclusions

Laves phase, C-15 structure, fcc unit cell T_cs between 160 K (UFe₂) and ~700 K (AmFe₂) Easy magnetization direction: <111> (U,Np) or <100> (Pu,Am)

X-RAY ABSORPTION SPECTROSCOPY: SPIN-ORBIT SUM RULE

M_{4,5} X-RAY ABSORPTION SPECTRA OF ACTINIDES

Intensity of the $\rm M_5$ XANES spectra decreases from U to Cm

Intensity of the M₄ XANES spectra decreases from U to Pu but increases for Cm

SPIN-ORBIT SUM RULE:

< l.s $> = -3/4n_h(2I_{M5}-3I_{M4})/(I_{M5}+I_{M4}) + \Delta$

 $= 3/2 n_{7/2} - 2 n_{5/2}$

 $\Delta = -0.014, -0.010, -0.005, 0.000, +0.005, +0.015$ for $n_e^{5f} = 2, 3, 4, 5, 6, 7$

G. van der Laan, Phys. Rev. Lett. 93, 097401 (2004)

Page 46 A. Rogalev | X-ray Spectroscopy | 11th SPCA | 14. Mars. 2016

APPLICATION OF THE SPIN-ORBIT SUM RULE

	В	n _e ^{5f}	2/3<1.s>	n _{5/2}	n _{7/2}
U ⁴⁺	0.65	2	-1.67	1.57	0.43
α-U ³⁺	0.687	3	-2.52	2.37	0.63
Np	0.742	4	-3.6	3.26	0.74
Pu	0.803	5	-4.56	4.10	0.90
Am	0.88	6	-5.56	4.95	1.05
Cm	0.735	7	-2.26	3.97	3.03

XANES spectra were measured on

- \blacktriangleright UO₂ for ionic state of U close to 5f² configuration
- U/Fe multilayers, UFe₂ for 5f³ configuration
- NpFe₂ for 5f⁴ configuration
- **PuFe**₂ for $5f^5$ configuration
- AmFe₂ for 5f⁶ configuration
- Cm metal for 5f⁷ configuration

Uncertainty of a few %

APPLICATION OF THE SPIN-ORBIT SUM RULE

LDA+DMFT : J. H. Shim, K. Haule and G. Kotliar, Euro. Phys. Lett. 85, 17007 (2009) Atomic multiplets: K. T. Moore and G. van der Laan, Rev. Mod. Phys. 81, 235 (2009) Experiment: EELS and XAS (K.T. Moore and G. van der Laan)

5f states are well described with intermediate coupling scheme

dipolar transitions

M_{4.5} XMCD OF ACTINIDES

 XMCD spectral shape at the M₅-edge has an asymmetric S shape for light actinides (U-Am) but becomes symmetric for Curium metal

 XMCD spectral shape at the M₄-edge has slight asymmetry on high energy side and negative for light actinides but changes the sign for Curium metal.

M_{4.5} XMCD OF ACTINIDES

PHYSICAL REVIEW B

VOLUME 55, NUMBER 5

1 FEBRUARY 1997-I

X-ray magnetic circular dichroism at the U M_{4,5} absorption edges of UFe₂

M. Finazzi Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Bâtiment 209D, Université Paris-Sud, 91405 Orsay Cedex, France

Ph. Sainctavit Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Bâtiment 209D, Université Pa and Laboratorie de Minéralogie et Cristallographie de Paris, CNRS URA9, Universités de Pa

A.-M. Dias Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Bâtiment 209D, Université Pa.

J.-P. Kappler Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Bâtiment 209D, Université Pa and Institut de Physique et Chimie des Matériaux de Strasbourg-Groupe d'Etude des Matéria. 67037 Strasbourg, France

G. Krill Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Bâtiment 209D, Université Pa

J.-P. Sanchez, P. Dalmas de Réotier, and A. Yaouanc CEA, Département de Recherche Fondamentale sur la Mattére Condensée, SPSMS, 3805-

> A. Rogalev and J. Goulon European Synchrotron Radiation Facility, Boite Postale 220, 38043 Grenoble (Received 30 July 1996)

	μ _L (μB)	μ _S (μB)	-μ _L /μ _S
X M C D	0.21 ± 0.02	-0.20 ± 0.02	0.97 ± 0.05
Neutron	0.23 ± 0.01	-0.22 ± 0.02	1.05 ± 0.05
Theory	0.47	-0.58	0.81

ferromagnet with $T_c = 160 \text{ K}$

 $\mu_{\rm Fe} = 0.58 \ \mu_{\rm B}$ and $\mu_{\rm U} \sim 0 \ \mu_{\rm B}$

Energy (eV)

 $\mathbf{T} = \mathbf{20} \ \mathbf{K}$

209D, Université Pa A9, Université Pa 209D, Université Pa d'Etude des Matéria nce 209D, Université Pa d'Etude des Matéria nce 209D, Université Pa t, and A. Yaouanc lensée, SPSMS, 3805 ulon 220, 38043 Grenoble 36) VIFe₂ U-M_{IV,V} e $\langle T_z \rangle$ is a measure of a spin moment anisotropy

induced either by a charge quadrupole moment or by the spin-orbit interaction

There are no any direct measurements of this term (so far !!!)

One can estimate $\langle T_Z \rangle$ via combination of XMCD with Neutron scattering, magnetic Compton scattering or SQUID measurements

XMCD IN AMFE₂

Both are ferromagnets

- UIrAl $(\mu_{TOT} = 0.98 \ \mu_B)$ $T_C = 64K$
- UPtAl $(\mu_{TOT} = 1.38 \ \mu_B)$ T_C=43K

Γ_C=64K Τ_C=43K

A.V. Andreev, J. Alloys Compd. 336, 77 (2001)

Isotropic spectra are similar at M5-edge

M4-edge XANES shows that there are more $5f_{5/2}$ holes in UIrAl

Different expectation value of the 5f spin-orbit interaction per hole

U valence state in UIrAI seems to be U⁴⁺ whereas in UPtAI it is U³⁺

	В	$2 < 1.s > /(3.n_h^{5f}) - \Delta$	n _e ^{5f}	n _{5/2}	n _{7/2}	for n _e ^{5f} =2
UIrAl	0.654	0 135	2 (U ⁴⁺)	1.62	0.38	$\Delta = -0.014$
	0.034	-0.135	3 (U ³⁺)	1.96	1.04	for n ₅ ⁵ f =3
	0.602	0.220	2 (U ⁴⁺)	2.11	-0.11	∆ =-0 .010
UPTAI	0.092	-0.230	3 (U ³⁺)	2.42	0.58	

- □ Strong XMCD at the M4-edge
- □ s-like shape XMCD at the M5-edge

element specific magnetization curves recorded at U similar to the macroscopic one

XMCD at the Ir $L_{2,3}$ -edges in UIrAl crystal

Strong	XMCD	at the	ledae
ouong			L ₃ Cuge

□ Small XMCD at the L₂-edge

□ Large Ir 5d orbital moment aligned parallel to the spin

$ \mu_{\rm L}^{\rm Ir}(5d) (\mu_{\rm B}/{\rm atom}) $	$ \mu_{\rm S}^{\rm Ir}(5d) (\mu_{\rm B}/{\rm atom}) $	$\frac{\mu_{tot}^{Ir}(5d)}{(\mu_{B}/\text{atom})}$	$\mu_{\rm L}^{\rm Ir}(5d)/\mu_{\rm S}^{\rm Ir}(5d)$
0.028	0.048	0.076	0.60

- $M^{U}(5f) = 0.92 \ \mu_{B} / U$ atom for $n_{f} = 2 \ (U^{4+})$
- $M^{U}(5f) = 0.62 \ \mu_{B} / U \text{ atom for } n_{f} = 3 \ (U^{3+})$
- $M^{Ir}(5d) = 0.076 \mu_B / Ir atom (sum over two Ir sites)$

 $M_{total} = M^{U} + M^{Ir} = 0.996 \mu_{B}$

Al and U(6d) contributions are neglected

VSM Data: $M_{total} = 0.98 \mu_B$ at 6 Tesla and 4.2K

XMCD is very powerful spectroscopy tool to unravel the microscopic origin of magnetism

ISSN 0031-918X, The Physics of Metals and Metallography, 2015, Vol. 116, No. 13, pp. 1285-1336. © Pleiades Publishing, Ltd., 2015.

Magnetic Circular Dichroism in the Hard X-ray Range¹

A. Rogalev and F. Wilhelm

The European Synchrotron, ESRF, 71 avenue des Martyrs, 3800, Grenoble, France e-mail: rogalev@esrf.fr Received August 4, 2015

> Coordination Chemistry Reviews 277–278 (2014) 95–129 Contents lists available at ScienceDirect

Coordination Chemistry Reviews

journal homepage: www.elsevier.com/locate/ccr

Review

COORDINATION

Gerrit van der Laan, Adriana I. Figueroa

Magnetic Spectroscopy Group, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom

Thank you for your patience and your attention !