

Bunch Separation with Reconance Island Buckets

P.Goslawski, J.Feikes, T.Goetsch, J.Li, M.Ries, M.Ruprecht, A.Schälicke, G.Wüstefeld

and the BESSY VSR design team

Helmholtz-Zentrum Berlin

November 26th, 2014 ESLS XXII, Grenoble

Zero current bunch length:

Cavity system for gradient manipulation

Normal rf cavity
 U' = 2π 0.5 1.5 GHz MV

Zero current bunch length:

BESSY VSR

Cavity system for gradient manipulation

- Normal rf cavity
 U' = 2π 0.5 1.5 GHz MV
- 1st sc cavity
 3rd harmonic
 - $U'=2\pi~1.5~20\,\mathrm{GHz}\,\mathrm{MV}$

Zero current bunch length:

BESSY VSR

Cavity system for gradient manipulation

- Normal rf cavity U' = 2π 0.5 1.5 GHz MV
- 1st sc cavity 3rd harmonic
 - $U'=2\pi~1.5~20\,\mathrm{GHz}\,\mathrm{MV}$
- 2nd sc cavity 3.5th harmonic
 - $U'=2\pi~1.75~17.1\,\mathrm{GHz}\,\mathrm{MV}$
- Beating pattern, large and small gradient *U*'

BESSY VSR

- Beating pattern, large and small gradient *U*'
- Short and long bunches
- Short $\sigma_{0,s} = 1.1 \, \mathrm{ps}$
- Long $\sigma_{0,l} = 10 \, \mathrm{ps}$
- Variable Pulse Length
 Storage Ring

Separation of short and long synchrotron pulses ...

... or electron bunches

$\begin{array}{l} \mathsf{Dynamic} \ \mathsf{methods} \\ \to \ \mathsf{disturbing} \end{array}$

1. Pulse picking, established!

- K. Holldack et.al., Nature Com. 5, 4010, 2014
- 2. Pulse excitation
 - \rightarrow Fast kicker
 - \rightarrow Transverse deflecting cavity

Static methods \rightarrow non-disturbing

1. Chopper system, established!

FZ Jülich and BESSY

2. Resonance Island Buckets \rightarrow Next slides

Resonance island buckets at MLS

Examples of islands - (x', x) phase space simulations

Near resonance

- Additional stable buckets
- Number of buckets = order of resonance
- \rightarrow Resonance island buckets

Operating machine close to resonance

- Minor impact on linear beam optics
- Only small de-tuning needed to move on resonance
- - Manipulation of resonance impact using sextupoles

х

Imaging with source point monitor (x, y)

Observation and results

- At MLS beam was stored stable in 2nd, 3rd, and 4th order resonance buckets
- Recipe: Move tune towards resonance and manipulate resonance impact using sextupoles
- \rightarrow Lifetime, loss rate, source point monitor, tune
- → Lifetime and source size (emittance) comparable with standard working point setting

3rd order buckets best studied

Manipulating the buckets

- Position of island shifts by quads, sextupoles, octupoles
- Rotated by skews, i.e., x-y coupling
- Tunes of core and island bucket different and separated by resonance
- Current manipulation by transverse excitation
- → Single bunch in resonance island using Bunch-to-Bunch Feedback

3rd order buckets best studied

Tunes

- Deformation when moving towards resonance
- Sharp peak at resonance position \rightarrow Separator
- Up to now tune separation of 20 - 30 kHz More possible? Stability?
- High current test $150\,mA$ with lifetime $>3\,h$
- Undulator (planar)

Separation at user beam lines

First measurements

- Tests with 50 mA
- 3rd order resonance at f = 833 kHz
- Core tune $f_{q_X} = 835 \, \mathrm{kHz}$
- Island tune $f_{q_X} = 825 \, \mathrm{kHz}$
- $\begin{tabular}{ll} \rightarrow & \mbox{Identifying the effective} \\ & \mbox{knobs} \end{tabular} \end{tabular}$

Summary & Conclusions

Bunch separation with resonance island buckets

- Motivated by BESSY VSR
- $\rightarrow~$ Separate short and long bunches in the transverse plane
 - Operating MLS on 2nd, 3rd (BESSY II) or 4th order resonance
 - In progress:
- \rightarrow Beam size comparison (emittance)
- $\rightarrow~$ Lifetime and diffusion rate of island/core beam
- $\rightarrow~$ Distributing current bunch by bunch
- $\rightarrow~$ Injection into island buckets

Thank you for your attention

Additional Slides

Additional Slides

Current status What's going on

Project BESSY VSR

- Strong support from HZB directory board and BESSY II users
- \rightarrow Next workshop: "From Pico to Femto", January 2015
 - Now: Writing the technical design study (TDS)
- \rightarrow TDS + application for strategic invest in mid 2015 (25 M€)
- \rightarrow 2018 preparatory phase (4.5 M \in), 2020 full operation (20 M \in)
 - Preparing BESSY II for VSR
- \rightarrow Cavities: design, interplay of beam and sc cavity Short bunches: injection, current limits, **Separation**, etc.

Short bunches in storage rings

Adjusting bunch length - longitudinal phase space

Zero current bunch length σ_0

$$\sigma_0 = \frac{\alpha \, \delta_0}{2\pi \, f_{\rm s}} = \delta_0 \sqrt{\frac{E_0}{f_0} \frac{\alpha}{{\rm U}'}}$$

with $f_s^2 = f_0 \frac{\alpha \ eU'}{4\pi^2 \ E_0}$

 $\begin{array}{l} f_0 \ - \ {\rm revolution} \ {\rm frequency} \\ \delta_0 \ - \ {\rm natural} \ {\rm energy} \ {\rm spread} \\ \alpha \ - \ {\rm mom.comp.} \ {\rm factor} \\ U' = 2\pi \ {\rm f}_{\rm rf} \ {\rm U}_0 \ - \ {\rm voltage} \ {\rm gradient} \end{array}$

Bunch length at BESSY VSR

$$U_{\rm VSR}^\prime = 80 \cdot U_{\rm BII}^\prime ~~ \sigma_0^{\rm VSR} = 0.11 \cdot \sigma_0^{\rm BII}$$

$$U_{\mathsf{BII}}'=~2\pi~0.75\,\mathrm{GHz}~\mathrm{MV}$$

$$U'_{\rm VSR} = 2\pi$$
 60 GHz MV

	Standard	$Low-\alpha$
emittance ε	5 nm rad	40 nm rad
mom.comp. α	$7.3\cdot10^{-4}$	$3.5\cdot 10^{-5}$
σ_0^{BII}	10 ps	2 ps
σ_0^{VSR}	1.1 ps	0.25 ps

Concept of BESSY VSR

Cavity system

Normal rf cavity: $U' = 2\pi 0.5 1.5 \text{ GHz MV}$ 1st sc cavity: $U' = 2\pi 1.50 20 \,\text{GHz}\,\text{MV}$ 2nd sc cavity: $U' = 2\pi 1.75 \,17.1 \,\text{GHz}\,\text{MV}$

Current in short bunches

Bursting threshold - single bunch instability

 \rightarrow Shifted CSR bursting threshold to higher currents

Current in short bunches

Bursting threshold - single bunch instability

Measurements at BESSYII

J.Feikes, EPAC 2004

- streak camera measurements
- THz data, fourier transform
- bursting threshold of CSR signals

Bunch instability from csr wake fields SLAC-PUB-11955, July 2006, Robert L. Warnock

- Single bunch instability, increase of
- bunch length
- energy spread (heat up)
- spoils beam quality

Current in short bunches

Measurements of bursting thresholds at BESSYII and MLS

M. Ries, PhD thesis, HU Berlin, 2014

- \rightarrow Anomaly appears due to modification of gaussian beam profile
- ightarrow Deviations between measurements and theory below anomaly ?

BESSY VSR

Project goals

Fill pattern

- Standard user: Short bunch 1.5 ps with 0.8 mA
- Low lpha operation: Short bunch pprox 0.5 ps with 0.02 mA

Why short bunches in storage rings

Demands of users - Science case

Accelerator physics at HZB

