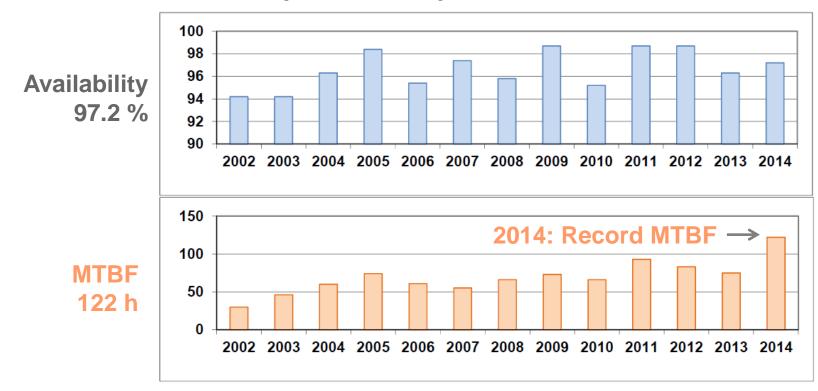


SLS Status and Development of an SLS2 Upgrade

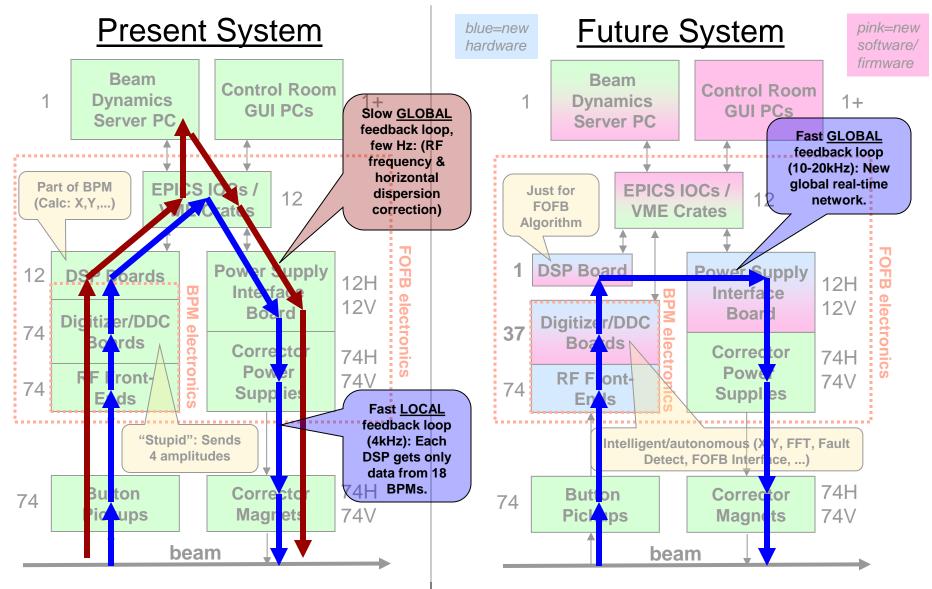

Michael Ehrlichman, Masamitsu Aiba, Michael Böge, Angela Saa-Hernandez, Andreas Streun Paul Scherrer Institut, Villigen, Switzerland

ESLS XXII meeting, Grenoble, Nov. 2014

Operation

SLS in 13th year of user operation: 18 beam lines Performance 2014 (Jan.-Oct.)

Two Major Incidents:

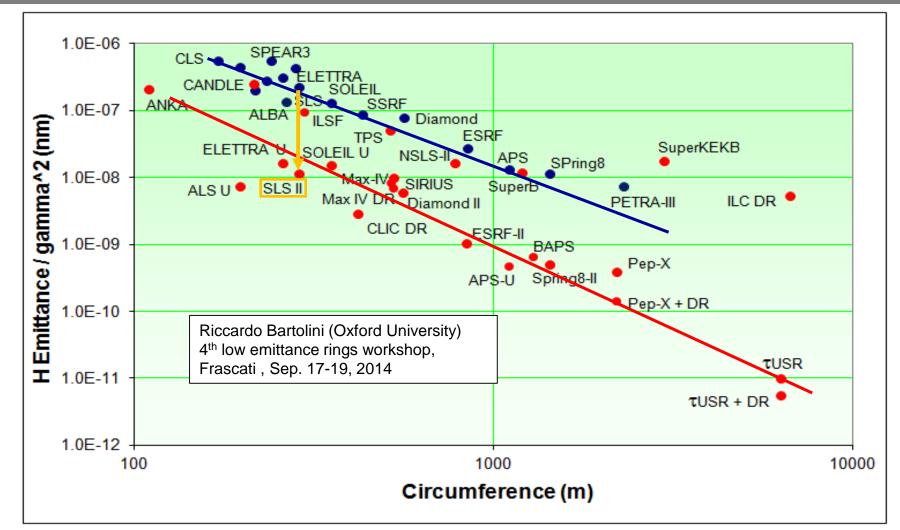

- U14 Broken Taper Foil, 76 hrs downtime
 - Located by activation
- 1-Second power outage, 65 hrs downtime
 - Helium compressor shut-off, partial warming of 3HC.

BPM system replacement¹

- New SLS BPM electronics
 - In-house design
 - Synergy with SwissFEL & E-XFEL (BPM FPGA board hardware, firmware, software, etc.)
 - Prototype: <100nm RMS noise at 2kHz BW (k=10mm geometry factor).
- New FOFB
 - Global BPM data transfer, one feedback engine (present system: 12 sector FBs communicating with adjacent sectors, 4KHz correction rate), more robust.
 - All feedback algorithms implemented low-level (DSP/FPGA) with ~10kHz correction rate (now: dispersive correction & photon BPM FB on high-level PC with few Hz correction rate).
 - Feedback algorithm in high-level language (presently: DSP assembler) provides better performance and allows adding new features:
 - Integration of coupling correction in FOFB: "2nd order orbit correction".
 - Fast polarization switching for PolLux and PEARL. Now: Slow reference to FOFB & feed forward for coupling.
- Schedule
 - Replacement 2016/17 (team presently busy with SwissFEL & E-XFEL BPMs & feedbacks).

¹ "Development of New BPM Electronics for the Swiss Light Source", W. Koprek, IBIC2012

SLS FOFB: Feedback Loops¹



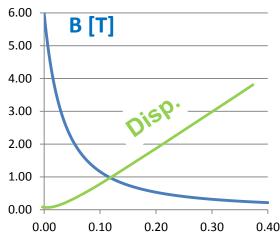
Boris Keil, PSI, SYN-GFA Meeting

Motivation for an SLS2 Upgrade

- SLS commissioned in 2000
 - Serving 18 beamlines with >97 % uptime
 - 5.5 nm x 5 pm emittance beams at 400 mA
- New, state-of-the-art machines coming online
 MAX-IV, NSLS2, ESRF Upgrade, PETRA 3, et. al.
- Need to stay competitive
- Project Goals
 - Replace SLS with significantly lower emittance design
 - Maintain existing building, injector, beam lines
 - Minimize downtime and impact to users
 - Moderate budget (<100 MCHF)

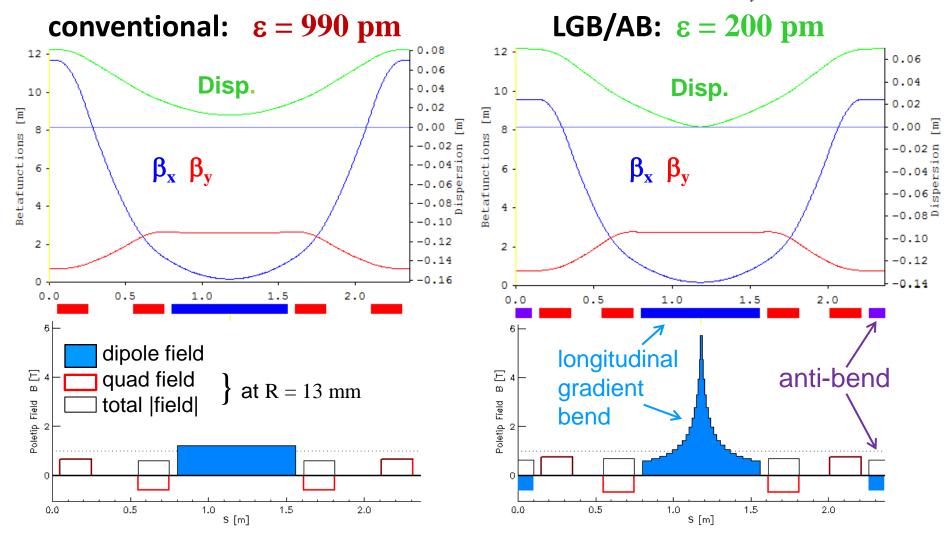
The storage ring generational change

Storage rings in operation (•) and planned (•). The old (—) and the new (—) generation.


SLS-2 design constraints and the main challenge

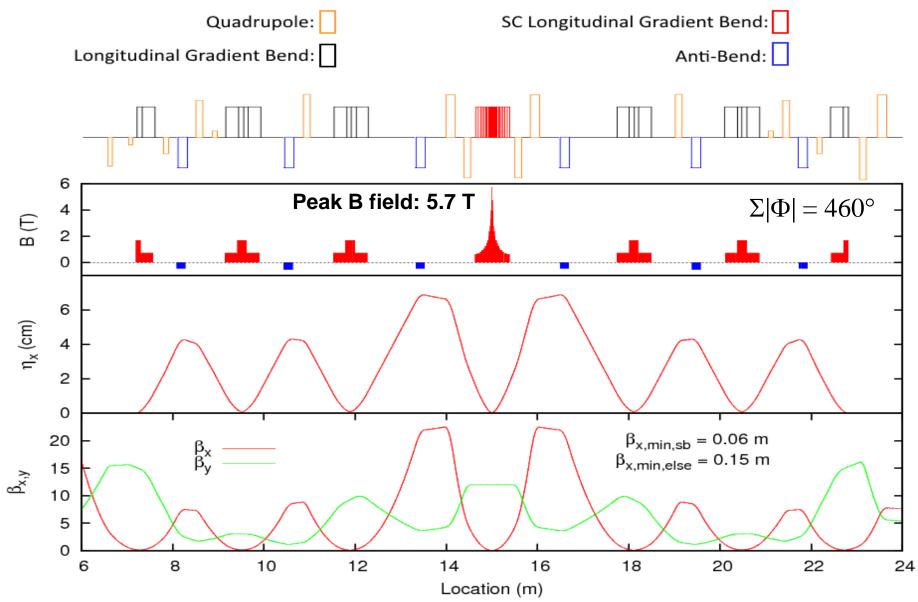
Constraints

- keep circumference: hall, tunnel.
- re-use injector: booster, linac.
- keep beam lines: avoid shift of source points.
- Iimited "dark time" for upgrade.
- Challenge: small circumference
 - Scaling MAX IV to SLS size and energy gives $\varepsilon \approx 1$ nm.
 - Multi bend achromat: $\epsilon \propto (number of bends)^{-3}$
 - Damping wigglers (DW): $\epsilon \propto \frac{\text{ring}}{\text{ring} + \text{DW}}$ radiated power
 - Low emittance from MBA and/or DW requires space !

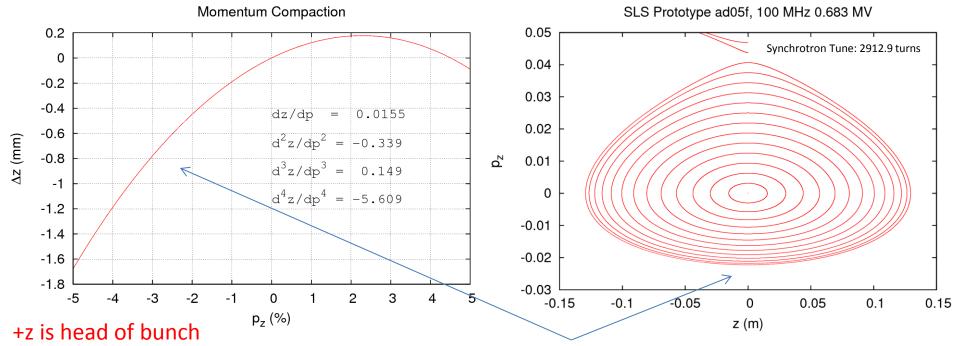

Compact low emittance lattice concept

- Longitudinal gradient bends (LGB): field variation B = B(s)
 - $\mathbf{\epsilon} \propto \int (dispersion^2...) \times (B-field)^3 ds$
 - \rightarrow high field at low dispersion and v.v.
- Anti-bends: B < 0
 - matching of dispersion to LGB
- ⇒ factor ≈ 5 lower emittance compared to a conventional lattice
- Additional benefits
 - Hard X-rays (\approx 80 keV) from B-field peak (\approx 5 Tesla)
 - ε-reduction due to increased radiated power from high field and from Σ|angle|>360° ("wiggler lattice")
 - AS & A. Wrulich, NIM A770 (2015) 98–112; AS, NIM A737 (2014) 148–154

A compact low emittance cell


- Conventional cell vs. longitudinal-gradient bend/anti-bend cell
 - both: angle 6.7°, E = 2.4 GeV, L = 2.36 m, $\Delta \mu_x = 160^\circ$, $\Delta \mu_y = 90^\circ$, $J_x \approx 1$

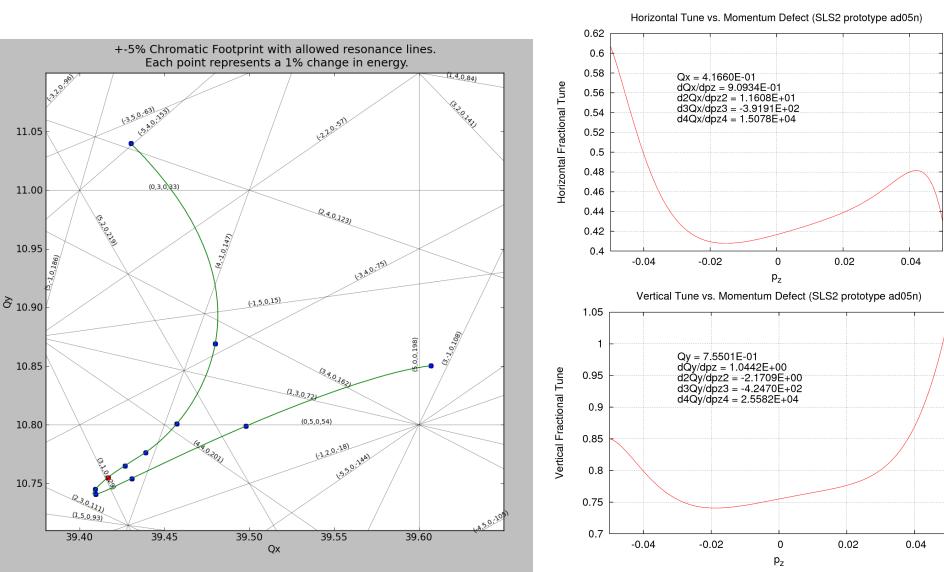
Lowest emittance Prototype


Comparison

	NSLS 2	PEP-X	MAX-IV	SLS	SLS2 (concept)	
E ₀ (GeV)	3	4.5	3	2.411	2.4	Impressive
Circ. (m)	780	2199	528	288	288	reduction
ε _x (pm)	550	11	320	5000	72	Momentum
v _x	32.35	113.23	42.2	20.43	39.42	<pre>/ compaction</pre>
vy	16.28	65.14	14.28	8.74	10.76	non-linear
α_{p}	3.7 10-4	5.0 10 ⁻⁵	3.1 10-4	6.0 10-4	-5.4 10 ⁻⁵	
ξ _x	-100.	-162.3	-49.8	-67.3	-154.7	
ξ _y	-41.8	-130.1	-43.9	-22.2	-46.4	Challenging
$-\xi_x/v_x$	3.1	1.2	1.2	3.3	3.9	nonlinearities
$-\xi_{\rm y}/v_{\rm y}$	2.6	2.0	3.1	2.5	4.3	

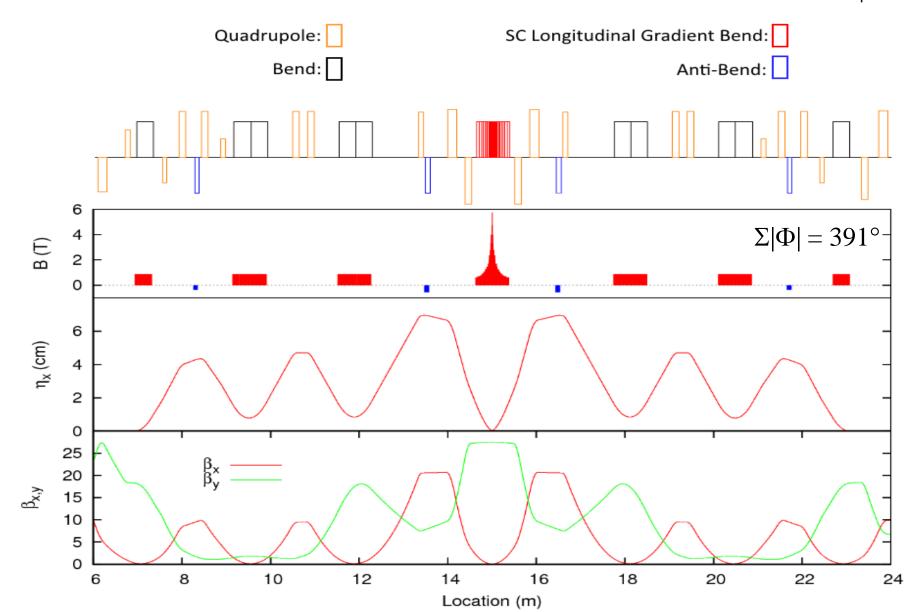
• Nonlinear momentum compaction makes this cell unfit for the SLS2 upgrade.

Longitudinal Dynamics


Bucket size limited by non-linear roll-off in momentum compaction

- Lattice is below transition.
- Momentum compaction is dominated by nonlinear terms.
- Goal: ±5% bucket.
- Limits injection scheme options.
- Manipulation of momentum compaction by multipoles seems to always require too large a sacrifice in DA.

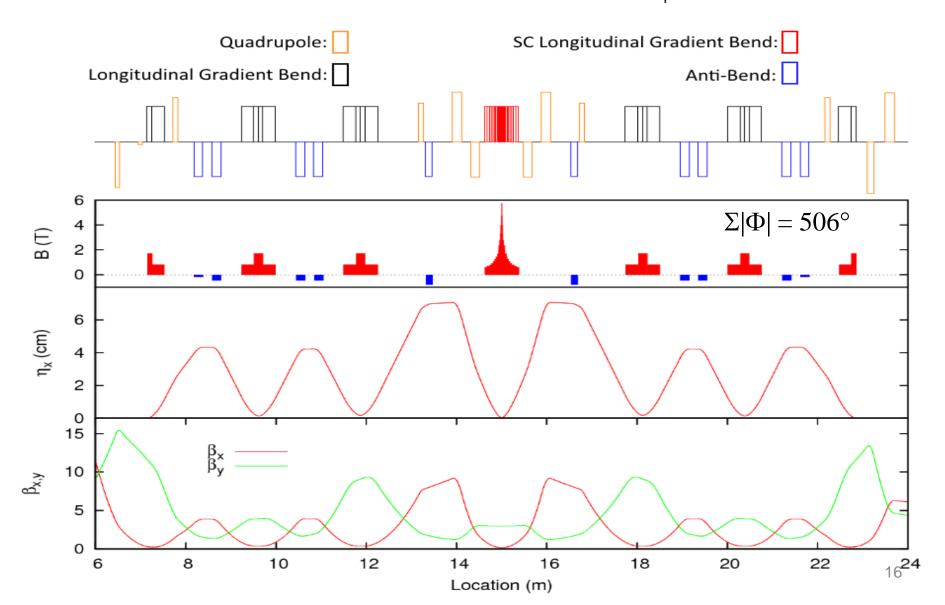
 Sextupole scheme that yields acceptable on-momentum DA, results in a large chromatic tune footprint.


PAUL SCHERRER INSTITUT

Large Positive α_p Prototype

• Adjust optics for finite dispersion in ordinary bends to generate large positive α_p .

PAUL SCHERRER INSTITUT


Comparison

	NSLS 2	PEP-X	MAX-IV	SLS	SLS2 (concept)	SLS2 (α _p >> 0)		
E ₀ (GeV)	3	4.5	3	2.411	2.4	2.4	Emittance	
Circ. (m)	780	2199	528	288	288	288	reduction not as	
ε _x (pm)	550	11	320	5000	72	183	impressive	
v _x	32.35	113.23	42.2	20.43	39.42	39.39	$/ \alpha_{p}$ is better	
Vy	16.28	65.14	14.28	8.74	10.76	10.76	up is beller	
α_{p}	3.7 10-4	5.0 10 ⁻⁵	3.1 10 ⁻⁴	6.0 10-4	-5.4 10 ⁻⁵	1.3 10-4		
ξ _x	-100.	-162.3	-49.8	-67.3	-154.7	-163.7		
ξ _y	-41.8	-130.1	-43.9	-22.2	-46.4	-70.46	Challenging nonlinearities	
$-\xi_x/v_x$	3.1	1.2	1.2	3.3	3.9	4.2	Tionineanties	
$-\xi_{y}/v_{y}$	2.6	2.0	3.1	2.5	4.3	6.5 4		

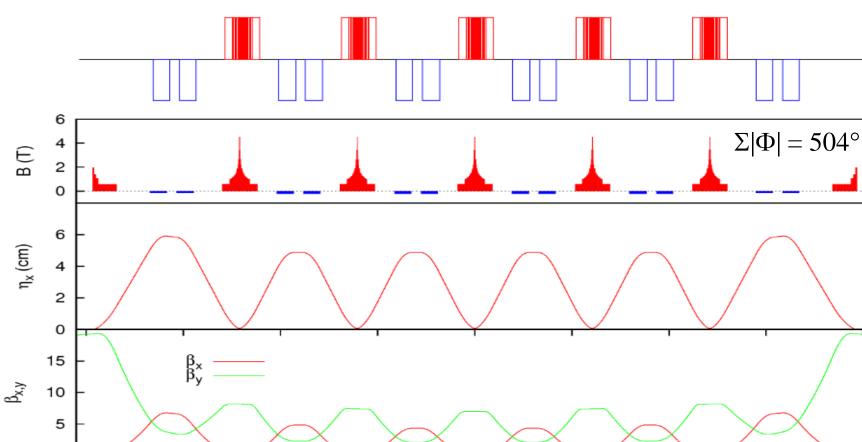
Large Negative α_p Prototype

• Large dispersion in anti-bends generates large negative α_p .

Comparison

	NSLS 2	PEP-X	MAX-IV	SLS	SLS2 concept)	SLS2 (α _p >> 0)	SLS2 (α _p << 0)	
E ₀ (GeV)	3	4.5	3	2.411	2.4	2.4	2.4	
Circ. (m)	780	2199	528	288	288	288	288	better ε_x
ε _x (pm)	550	11	320	5000	72	183	162	
v _x	32.35	113.23	42.2	20.43	39.42	39.39	35.58	α_{p} is
vy	16.28	65.14	14.28	8.74	10.76	10.76	13.86	linear
α_p	3.7 10-4	5.0 10 ⁻⁵	3.1 10-4	6.0 10 ⁻⁴	-5.4 10 ⁻⁵	1.3 10-4	-1.0 10-4	
ξ _x	-100.	-162.3	-49.8	-67.3	-154.7	-163.7	-73.0	
ξ _y	-41.8	-130.1	-43.9	-22.2	-46.4	-70.46	-40.6	
$-\xi_x/v_x$	3.1	1.2	1.2	3.3	3.9	4.2	2.1	
$-\xi_y/v_y$	2.6	2.0	3.1	2.5	4.3	6.5	2.9	

- Acceptable DA & tune shifts not found when using local optimizer on NDTs.
- Off-momentum DA is esp. important (+/- 5%).
- Now working with multi-objective genetic optimizer.


Relaxed optics

7BA Superbend Cell (preliminary)

Anti-Bend:

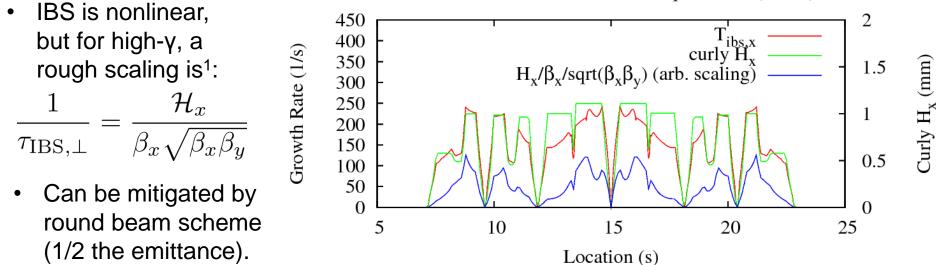
- 7BA constructed of superbends and antibends.
- Cancelation of 1st order driving terms.
- Increased radiation.
 SC Longitudinal Gradient Bend:
- Weaker SC field required (4.5 T).

Location (m)

PAUL SCHERRER INSTITUT

Comparison

	NSLS 2	PEP-X	MAX-IV	SLS	SLS2 (concept)	SLS2 (α >> 0)	SLS2 (α << 0)	SLS2 (7BA)
E ₀ (GeV)	3	4.5	3	2.4	2.4	2.4	2.4	2.4
Circ. (m)	780	2199	528	288	288	288	288	288
ε _x (pm)	550	11	320	5000	72	183	162	131
v _x	32.35	113.23	42.2	20.43	39.42	39.39	35.58	37.38
v _y	16.28	65.14	14.28	8.74	10.76	10.76	13.86	9.26
α_{p}	3.7 10-4	5.0 10 ⁻⁵	3.1 10-4	6.0 10-4	-5.4 10 ⁻⁵	1.3 10-4	-1.0 10 ⁻⁴	-1.1 10 ⁻⁴
ξ _x	-100.	-162.3	-49.8	-67.3	-154.7	-163.7	-73.0	-63.7
ξ _y	-41.8	-130.1	-43.9	-22.2	-46.4	-70.46	-40.6	-45.1
$-\xi_x/v_x$	3.1	1.2	1.2	3.3	3.9	4.2	2.1	1.7
$-\xi_y/v_y$	2.6	2.0	3.1	2.5	4.3	6.5	2.9	4.9


- 7BA Superbend cell is very preliminary.
- 60 superbends will be more expensive than 12.

 $\begin{array}{c} \text{Better } \epsilon_x \\ \text{Good } \alpha_p \end{array} \\ \text{Relaxed linear optics} \\ \text{Vertical nonlinearities challenging} \end{array}$

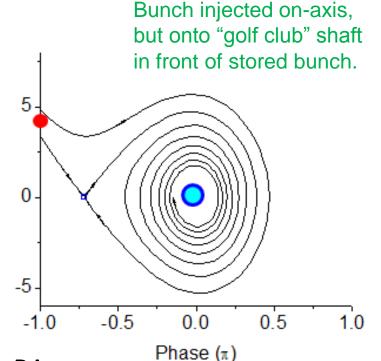
IBS in Anti-Bend LGB Cell

IBS Horizontal Growth Rate at Equilibrium (bc04a)

• Only weakly dependent on RF, due to current requirements.

Prototype Lattices	Zero Current Radiation Only ε _x	5 mA, 100 MHz 5% Bucket, 3HC (2x BL) 10 pm ε _γ ε _x	1 mA, 500 MHz 5% Bucket, 3HC (2x BL) 10 pm ε _γ ε _x
Concept	73 pm	110 pm	95 pm
α << 0	183 pm	210 pm	202 pm
α >> 0	162 pm	200 pm	187 pm
LGB 7BA	131 pm	157 pm	143 pm

¹A. Fedotov. "Comments on simplified treatment of intrabeam scattering using plasma approach.", 2004



Injection Schemes

- Goals:
 - 1. Minimize user impact during top up
 - 2. Compact layout
 - 3. Minimize DA requirements
- "4 kicker" scheme meets none of these goals
- Longitudinal injection
 - Potentially meets all three goals.
 - Challenges
 - Requires "golf club" acceptance
 - Requires big momentum acceptance
 - Technological hurdles if 500 MHz used
- Multipole kicker injection
 - Possible solution, but off-axis, requires larger DA
- Investigating hybrid approach
 - Use multipole kicker to kick off-momentum particle onto dispersive closed orbit.

88

Near-on-axis, off-momentum.

SLS-2 Design Research

- Find cell design that gives sub-200 pm emittance and allows for acceptable DA and tune shifts.
- Design & prototyping of SC Superbends.
- Study machine impedance, decide on RF system.
 - Perhaps negative chromaticity with negative momentum compaction will also suppress head-tail & coupled bunch.
- Explore round beam schemes.
 - Split the emittance, makes IBS negligible
 - Round beam desired by most users.
- Develop orbit feed-back based on photon BPMs.
 - Carry over from SLS BPM Upgrade Project.
 - Lattice too dense for placing RF-BPMs at all locations.
- Explore on-axis injection schemes.
- MOGA and PSO for direct optimization of dynamic aperture.
 - Assisted by NDT calculations.

Conclusion

- SLS-2 design is constrained by comparatively small ring circumference.
- New LGB/AB cell provides a solution for compact low emittance rings.
- An emittance of 100-200 pm seems possible with contemporary magnet technology.
- But feasibility has not yet been proven.
- Project is in Concepts & Research phase.
- A conceptual design report is planned for 2016.