# Vibrations in the DCM and their effect on the beam stability and source broadening

# Ilya Sergeev, Ralph Doehrmann

# PETRA III, DESY

Effect of crystal vibrations on the beam focal position

- Beam vibrations measurement procedure
- Overview of the vibrations in DCM at PETRA III and ESRF (ID06, ID18)

Offline measurements with differential interferometer
 Characteristic features found with offline measurements

Conclusion



## Effect of crystal vibration on the focus position

#### Idea from R. Tucoulou et al., J. Synch. Rad (2008)



Focal size:

$$focus = \frac{L_f}{L_s} source$$

Effect of crystal rotation:

Shift of the virtual souce:

 $\Delta s = 2\Delta \phi \cdot L_c$ 

Shift of the focal position:

$$\Delta f = \frac{L_f}{L_s} \Delta s = \frac{L_f}{L_s} L_c \cdot 2 \Delta \phi$$



# Effect of the optics vibrations on the beam stability



#### Monochromator

#### Separation of vibration contributions





### **Vibration measurements**

- Direct measurement of beam vibrations by fast X-ray camera.
  Restricted frequency range
- Measurements of beam intensity fluctuations



- 1. Slit at the half beam with/without focusing
- 2. Slope of the rocking curve.



# Vibration measurements at P01, PETRA III



















### **Evolution of vibrations with time**



Measurements at P01 PETRA III.

Upgrade of mono – - beginning of November 2012



# **Effect of vibration in Channel-Cut and in DCM**



Source broadening:  $\sigma_{source}$  = 0.27 urad  $\cdot$  2  $\cdot$  38.5 m = 21 um Focal broadening:  $\sigma_{foc}$  = 21 um  $\cdot$  1.26 / 86.2 m = 0.31 um, FWHM<sub>foc</sub> = 0.73 um

Broadening from beam size: FWHM<sub>foc</sub> =  $\sqrt{1.73^2 - 1.49^2} = 0.88$  um



# Frequency distribution of vibrations for DCM and CC





### **Overview of the vibrations of monochromators**





# **Overview of the vibrations of monochromators**





### Vibration measurements without beam



### Vibration measurements without beam







## Effect of the tubes on vibrations



Tubes to the 1<sup>st</sup> crystal holder:

- 1. No tubes
- 2. Tubes with flexible sleeve



3. Copper tubes



4. Corrugated tubes





### **Effect of tubes on vibrations**







#### **Resonance in corrugated tubes**

. 50

Cryo frequency / Hz



0.

 Cryo frequency / Hz

# Summary

• DC monochromators produce significant angular vibrations of the crystals in the vertical plane. Characteristic range:

 $\sigma_{ang}$  = 0.10÷0.30 µrad  $\sigma_{source}$  = 8÷30 µm

- The characteristic frequency range of the vibrations is 40-300 Hz.
- The procedures of the vibration measurements is established with beam and offline with differential interferometer



# Acknowledgment

#### Ralph Doehrmann



#### PETRA III Optical group

Joachim Heuer Horst Schulte-Schrepping Jan Horbach

#### PETRA III beamline stuff

Hans-Christian Wille Kai Schlage Hasan Yavas

> Stephan Roth Gonzalo Santoro

Gerald Falkenberg Gerd Wellenreuther Ulrike Bösenberg Philipp Alraun

Jörg Strempfer Sonia Francoual

Michael Sprung Alexey Zozulya

Alke Meents Nicolas Stuebe Tim Pakendorf

Stefan Fiedler Gleb Bourenkov

#### ESRF ID06, ID18 stuff

Carsten Detlefs Anatoly Snigirev

Alexander Chumakov

