

Double Crystal Monochromator Workshop ESRF, Grenoble, 13 and 14 May 2014

The European Synchrotron

Thermal, mechanical deformation and stability of Monochromator Crystals under high heat load

Outline

Cooling strategy

• Water or LN2, direct or indirect, crystal size and cooling scheme

Crystal material, properties

• Crystals, Silicon, doping, anisotropic elasticity, pure isotope

Thermal deformation

- Finite element analysis (FEA)
- Measurement techniques
- Comparison between measurements and simulations
- Some extended FEA results
 - Power and power density, beam size, grazing angle, cooling coefficient,...
 - Focusing effects
- Initial deformation of the crystal
 - Manufacturing, mounting, and cooling down to LN2 temperature
- Stability and vibration
 - Some measurement results

Cooling strategy: mirror and monochromator

Thermal deformation - comparison of mirror and monochromator

- For an incident beam at 30 m
 - Power density P_{a0}=200 W/mm²
 - Beam size HxV=2x1 mm²

White beam mirror

Monochromator crystal

typical length: 100 mm

- typical grazing angle: 2 mrad
- footprint: 500 ~ 1000 mm
- Power density $P_a \sim 1 \text{ W/mm}^2$
- Topside cooling by water
- typical **Bragg angle**: 12° (209 mrad)
- footprint ~ 1% as long as for mirror
- Power density $P_a \sim 50 \text{ W/mm}^2$
- **Cooling scheme ?**

Cooling strategy: white beam mirror

Solution to minimize thermal deformation for white beam mirror (smart shape + full illumination):

Cooling strategy: mirror and monochromator

Can monochromator crystal be cooled as mirror (full illumination) ?

White beam mirror

 $P_a = 1 \text{ W/mm}^2$ $W_{bm}=2 \text{ mm}, H_{cool}=10 \text{ mm}$ $h_{cv-eq} = 5000 \text{ W/m}^2/^{\circ}\text{C}$

$$\overline{\Delta T_{\min}} = \overline{T_{\min}} - T_f = \frac{P_a}{h_{cv-eq}} \frac{W_{bm}}{2H_{cool}}$$
$$\overline{\Delta T_{\min}} = 20^{\circ}C$$

For Monochromator crystal

P_a ~ 50 W/mm²
→
$$\overline{\Delta T_{\min}} = 1000^{\circ}C$$
 !!!

Impossible to cool the Monochromator as the mirror

Cooling strategy for monochromator crystal

Full side cooling (to increase cooling surface area)

- $P_a \sim 50 \text{ W/mm}^2$
- W_{bm} =2 mm, L_{bm} =5 mm,
- H_{cool}=t_{mono}=50 mm
- $L_{cool}=L_{mono}=100 \text{ mm} >> L_{bm}$
- $h_{cv-eq} = 5000 \text{ W/m}^{2/\circ}\text{C}$

$$\overline{\Delta T_{\min}} = \frac{P_a * W_{bm} * L_{bm}}{h_{cv-eq} * 2 * H_{cool} * L_{cool}}$$

$$\overline{\Delta T_{\min}} = 10^{\circ}C$$

Cooling of monochromator needs crystal significantly longer than beam footprint

Bottom cooling

• Cooling surface area reduced

- No thermal contact resistant
- Sealing difficulty
- Sealing induced stress and deformation

Crystal material, Properties of Si

Materials for Monochromator crystal

- > Silicon:
 - Perfect crystal
 - Large size Φ100x500
 - Very reasonable price (900€/kg, 9000€ for Φ100x500)
 - Interesting properties at low temperature

Germanium

- Less perfect
- Medium size Φ100x75
- 4 ~ 40 times more expensive than Si
- HPHT Synthetic Diamond
 - Imperfect
 - Small size 10x10x1
 - Expensive

Anisotropic elasticity of Si

- > Silicon: cubic diamond crystal structure
- Stiffness coefficient matrix

By codes (MatLab, Python)

- 3 three independent elastic coefficients for Si (100)
- Can be calculated for any crystallographic orientation
 - Analytically

Figure 6

(a) Elastic modulus in the directions \mathbf{e}'_1 and \mathbf{e}'_2 . (b) Shear modulus and (c) Poisson's ratio in the directions 12 and 23 for silicon (311). The vector \mathbf{e}'_1 is fixed in the normal direction [311], and the vectors \mathbf{e}'_2 and \mathbf{e}'_3 are in the crystal plane (311). The angle α is between the vectors \mathbf{e}'_2 and $[0\ 1\ -1]/2^{1/2}$ in the crystal plane: $\mathbf{e}'_2(\alpha=0^\circ) = [0\ 1\ -1]/2^{1/2}$, $\mathbf{e}'_2(\alpha=90^\circ) = [2\ -3\ -3]/(22)^{1/2}$.

- Important for bent silicon crystal
- For thermal deformation ?

L. Zhang et al., J. Synchrotron Rad. (2014). 21, 507–517

Anisotropic elasticity of Si

> Thermal deformation

• Depends on the Poisson's ratio:

$$\Delta \theta \propto \frac{(1+\nu)}{k} \frac{\alpha}{k}$$

- Poisson's ratio depends on the crystal orientation
- Thermal slope error

$$\Delta \theta = \frac{\partial u_1}{\partial x_2} \propto \left(v_{12} + v_{13} \right) / 2$$

e₂ e₃

- But the average $v_{av} = (v_{12} + v_{13})/2$ is constant
- > Thermal deformation with anisotropic elasticity of silicon \rightarrow Simulation with isotropic and constant elasticity (v_{av})

L. Zhang et al., J. Synchrotron Rad. (2014). 21, 507–517

9

Si related Crystal material: Germanium doped silicon

- > Germanium doped silicon Si_{100-x} - $Ge_x(x \le 2\%)$
 - Ge doping decreases dislocation mobility, and modifies dislocation nodes in Si crystalline lattice
 - →Increasing semi-conducting device efficiency: material strength, current carrier mobility
 - Application to DCM: Si_{100-x}-Ge_x for 1st crystal (LN₂), Si for 2nd crystal (water)
 - Vegard's law: $\Delta d / d_{Si} = \mu x$ ($\mu = 4.18 \times 10^{-4}$)

A. Souvorov and A. Snigirev, Rev. Sci. Instrum. 68, 1997

- Concentration $x \sim 0.7\%$
- Ge doping reduces dramatically the thermal conductivity of Si especially at LN2 temperature
- →Therefore the application of Si-Ge crystals to cryogenic cooling cannot be recommended

A. Freund, J.A. Gillet & L. Zhang, Proc. SPIE **3448**, (1998); doi:10.1117/12.332526

The European Synchrotron | ESRF

Si related Crystal material: pure isotope silicon

> Three stable isotopes in natural silicon:

- Silicon-28 : 92%
- Silicon-29 : 4.7%
- Silicon-30 : 3.3%

Single-isotope silicon-28 crystal (99.9%)

- Very high thermal conductivity (k = 30 000 W m⁻¹ K⁻¹ at 20 K, 6 times higher than natural Si)
- > Available, used in semiconductor industry
- Small size, very expensive
- Technology challenge for effective cooling
 - Huge size and high cost of cooling system for 500 W cooling power

L. Zhang et al., AIP Conference Proceedings, 705, pp.639-642 (2003)

^{nat}Si, ²⁸Si and Diamond for very high heat-load monochromator

Macro-pulse train effects (f=10Hz)

- LN2 cooled diamond crystal (20mm x 20mm x 20mm)
- LHe cooled single-isotope silicon-28 crystal (20mm x 20mm x 20mm)
- LHe cooled natural silicon crystal (120mm x 60mm x 60mm)

Thermal deformation of the monochromator crystal

For monochromator crystal

- > 3D temperature and deformation
- > Non-linear material properties (k, α)
- > Finite Element Analysis (FEA) for the modeling

Example of water cooling

Thermal deformation : side cooling versus bottom cooling

Side cooling

(by water)

bottom cooling

- Similar temperature distribution but low temperature with side cooling
- Very comparable thermal deformation:
 - 0.7% lower thermal deformation with side cooling
 - \rightarrow Thermal bump deformation predominant !

How to reduce this huge thermal slope error θ_{th} = 1085 µrad ?

Thermal deformation : water cooling versus LN2 cooling

Water cooling

LN2 (Liquid Nitrogen) cooling

ESRF

The European Synchrotron

Thermal deformation: indirect measurement technique

- ➤ Thermal deformation → Rocking-curve broadening
- > Rocking-curve width:

$$FWHM_{c} = \sqrt{\left(\theta_{th} + \theta_{0}\right)^{2} + FWHM_{intr}^{2}}$$

Comparison of test and FEA results for ID09 LN2 cooled Si crystal (Channel-Cut Monochromator)

Thermal deformation: direct measurement technique

Applied to ID06, ID18 and ID26 LN2 cooled Si crystal

Multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator

17 Thermal, mechanical deformation and stability of DCM, 13-14 May 2014, L. Zhang

Thermal deformation: direct measurement technique

ID06 LN2 cooled Si crystal (DCM)

- **FEA** (Gaussian distribution and volume power absorption, h_{cv} determined by fitting temperature in only one case)
- For various other cases (I, HxV)

> Excellent agreement in Temperature

Zhang L. et al., J. Synchrotron Rad. (2013). 20, 567–580

Thermal deformation: direct measurement technique

The European Synchrotron

Thermals slope versus Power and Bragg angle

For UPBL06 LN2 cooled monochromator crystal

- Si 111, 5~20 keV
- LxWxT = 100x60x80 mm³
- White beam mirror used to reduce the heat load
- Beam size HxV=2x1 mm²
- Indirect cooling h_{cv}=4000 W/m²/K
- ➢ Bragg angle: 5.6 ~ 23.1°

Thermals slope versus Power and Cooling coefficient

For UPBL06 LN2 cooled monochromator crystal

- Bragg angle: 10.4,
- Effective cooling coefficients:
 - h_{cv} (W/m²/K)
 - 2000 poor contact
 - 4000 correct contact
 - 8000 excellent contact
 - 12000 direct cooling
 - 20000 enhanced direct cooling

Indirect cooling vs direct cooling

- P_{limit} (Indirect cooling) = 345 W
- P_{limit} (direct cooling) = 375 W
- Direct cooling is interesting for the heat load in a small range (345, 375) W
- Good contact between cooling block and silicon crystal is needed

Focusing effects of the monochromator crystal

For UPBL06 (ID20) LN2 cooled Si crystal

- Silicon crystal at p=31 m
- Beam size: HxV=(**1.8~2.8**)x0.8 mm² at 27m
- Bragg angle: 5.6 ~ 23.1°
- Variable absorbed power
- Gaussian power distribution
- Thermal deformed crystal shape calculated by FEA: radius R_xtal
- Required radius R_req for beam collimation $(q \rightarrow \infty)$:

$$R_{-req} = \frac{2p}{\sin(\theta_{Bragg})}$$

 Beam collimation is achievable by using only monochromator and by monitoring primary slits opening

Zhang L. et al., J. Phys.: Conf. Ser. **425** (2013) 052008 doi:10.1088/1742-6596/425/5/052008

Diamond crystal monochromator

ID28 SS Diamond monochromator, U32g15

- Parameters
 - e_{ph} > 12 keV
 - At 28 m from the sources
 - Incident angle: 26 degrees
 - Beam size: HxV = 1.3 x 0.5 mm²
 - Water cooling (indirect)
 - Diamond crystal size: 4x8x0.3 mm³
 - Darwin width at 311: 2 µrad

> Recommendations for $\Delta \theta < 0.4 \mu rad$, $T_{max} < T_{melt}(ln)$

- Beam size reduced to just cope with centre cone HxV = 1.3 x 0.5 mm²
- 0.8-mm (0.3+0.5) thick diamond attenuator in front
- Maximize contact surface area
- Thermal Contact Resistance (TCR) > 7000 W/m²/°C (Indium foil to be used)

Initial deformation of the crystal

Heat load tests of the LN2 cooled monochromator \rightarrow initial deformation of the crystal due to

 Monochromator components manufacturing, crystal cutting, mounting and assembling, cooling down from T_{room} to T_{LN2}

ID06 DCM

0.45

2900

θ₀ =

h_{eff} =

ID18 DCM	ID09 CCM	
1.0*	5.5	µrad
3500	1400	W/m²/K

Stability and vibration of the monochromator

Example of ID06 Cinel mono

Correlation between X-ray intensity fluctuation and mechanical vibration

- ➤ F=24.8, 66.2, 70.3, 78.7, 82.8 Hz
- 1st peak due to vacuum pump 1, other 4 peaks due to pump 2

Remaining peaks 0 probably due to mechanics \rightarrow room for improvement

DCM vibration tests in ID06 (2008)

➢ For Oxford mono, high ∆I for f_{pump} > 45 Hz is due to the cooling scheme and mechanical structure of the mono

Beam intensity fluctuation ∆I versus the cryo-cooler pump frequency

DCM vibration tests in ID22 (1997)

1997, ID22, 3D accelerometer 1st direct in-situ measurement on the LN2 cooled crystal

TUU

80

Frequency in Hz 09

DCM vibration tests in BM25 (2004)

Duo-beam Laser Vibrometer

- > Thermal deformation can be accurately modeled
- Crystal monochromator has focusing effects (R~ 200 m)
- > Thermal deformation depends on Poisson's ratio *v*:

 $\Delta \theta \sim (1 + v)$

- but Anisotropic elasticity of the silicon can be taken into account by use of an average Poisson's ratio in a simulation with isotropic and constant elasticity
- There are rooms for the improvement in terms of stability, and initial deformation of the crystal monochromator

Acknowledgment

ESRF:

Co-authors of cited papers

R. Barrett, A.I. Chumakov, P. Cloetens, C. Detlefs, L. Eybert, A.K. Freund*, K. Friedrich*, P. Glatzel, T. Mairs, P. Marion, G. Monaco*, C. Morawe, T. Roth*, M. Sanchez del Rio, T. Weng*, M. Wulff

(* Left ESRF)

For diamond crystal monochromator

A. Bosak, J. Härtwig, P. Van Vaerenbergh

> Many other ESRF colleagues

J. Susini, Y. Dabin, M. Lesourd,...

Other light sources (Co-authors of cited papers) :

W.K. Lee, H. Schulte-Schrepping, T. Tschentscher

Many thanks for your attention

TS 2210011

