Hard X-Ray Monochromators at PETRA III

evolution and status

Horst Schulte-Schrepping, DESY FS-BT DCM workshop, ESRF, 2014

More or less chronological...

Carsten Detlefs and the ID6 team, Philippe Marion, Anatoly Snigirev Ulrich Hahn, Joachim Heuer, Mathias Hesse, Hans-Christian Wille Jan Horbach, Hans-Bernhard Peters Hartmut Lüdecke, Alexander Donath, Gerald Falkenberg Karen Appel, Edmund Welter, Roman Chernikov Ralph Döhrmann, Ilya Sergeev

and all

DESY FS-BT colleagues

PETRA III colleagues

PETRA III

- particle energy:
- stored current:
- emittance:
- circumference:
- sectors:
- # of undulators:
- beamline length:

6 GeV 100 mA (top-up)

- 1 nmrad
- 2304 m
 - 9
 - 14 (2*2m canted, 5m single, 10m single)
- 70 100 m

- built in 1978
- rebuilt as a synchrotron radiation source in 2007/08
- commissioning since 2009
- user operation since 2010

PETRA III Extension Halls East and North

Horst Schulte-Schrepping | Hard X-Ray Monochromators at PETRA III | May 12-13, 2014 | Page 4

100 mA Top-Up Operation

Horst Schulte-Schrepping | Hard X-Ray Monochromators at PETRA III | May 12-13, 2014 | Page 5

Hard X-ray Monochromators at PETRAIII

Evolution of the High-Heatload DCM at PETRAIII

- channel-cut integration
- undulator/monochromator scanning

Systems for canted undulator sectors: solutions for a geometrical constraint

Special systems

- diamond silicon Laue monochromator at P02.1
- Multilayer monochromator at P06

"(not so) Oldies but Goldies" - DORIS C-Type DCM for PETRA III Extension beamlines

DCM Specifications, Prototypes 2005 and Series 2008

cryogenically cooled, 2 crystal systems, 20-24mm offset, Bragg direct drive

ESRF/ID6 Test Installation

Setup of the optics hutch at ID06 of the ESRF; length 15m

beam shutter

monitor W shield CINEL

FMB-OXFORD

calorimeter attenuators high power slits fast shutter

Targets:

- Stable fixed exit
- Maximum reflectivity, theoretical resolution
- Coherence conservation
- Tunability in a wide energy range (2kev 100keV)
- pink beam: HHLM to cope with heat load ~1kW.

Since Feb 2008 beam from in-vacuum undulator (P=18mm, min. gap=6mm) + standard U34mm (12mm gap) . 500W / 200W in 2mm x 1mm resp.

DCM mechanics

DCM mechanics at home position, 0 degree Bragg, 0 mm parallel axis Horst Schulte-Schrepping | Hard X-Ray Monochromators at PETRA III | May 12-13, 2014 | Page 9

Special Feature: Yaw Axis Glitch Tuning

Apparent Source Size: Sensicam

@ 54Hz pump frequency

zoom

E = 13.5 keV Source to fiber = 54 m, Fiber to camera = 5.3 m eff. source size best about = 50 μ m

Apparent Source Size: Film

eff. source size $3.6\mu m^*(37.4/3.1) = 44 \mu m$ (theoretical high β value from machine group vert. FWHM = 23 μm)(year 2000 measurement high β ID22 FWHM = 35 μm) Measurement by A.Snigirev/ESRF

PETRA III and the present state of the DCM

- > 14 Beamlines P01-P14
 - 8 standard Oxford-DCM
 - 2 LOM
 - 3 modified Oxford-DCM/EMBL
 - 5 other types (3*Laue, XUV, Multilayer)
- > Beam vibrations from 0.15 µrad to 0.4 µrad

> Goal: 50nrad, down to ??

Integration of a Channel-Cut

channel-cut crystal without weak-link

first crystal set

cut-out for channel-cut

second crystal set

Channel-Cut crystal system integrated into the high heatload fixed exit design.

DCM Specifications 2012 for PETRAIII-Extension

Red: parameters/definitions from 2008 DCM specification

Motion	Range	Repeatability (Accuracy)	Min. Step Resolution for setpoint position (Resolution)
mvx	±40 mm	±0.010 mm	0.005 mm
mvz	±10 mm	±0.02 mm	0.002 mm
mvyaw	±1°	±175µrad	17.5µrad
Mono range	2.1° - 55.5°	±240nrad	
Mono step			100nrad
X1roll	±0.5° (±1.0°)	±17.5µrad	1.75µrad
X2pitch	±0.5° (±1.0°)	±17.5µrad	1.75µrad
X2pitch-piezo	±35µrad	±175nrad	17nrad
X2roll	±0.5° (±1.0°)	±0.001°	0.0001°
X2roll-piezo	±0.02°	±0.0005°, feedback	0.0001°
X2y	290 mm	±0.005 mm pitch < 0.0001°/ 1mm < 17.5µrad accumulated 150µrad (300µrad)	0.001 mm
X2z	15 mm	±0.005 mm pitch < 17.5µrad/10mm	0.001 mm
X2z-piezo	±0.025 mm	+0 0001-mm,feedback	0.00005 mm

Scanning at PETRAIII

Fast EXAFS measurement in synchronous mode at P06

R. Chernikov, E. Welter, W. Caliebe, G. Falkenberg

Undulator taper vs. Undulator scanning

Pros Taper:

- No parts moving in the undulator during the scan
- High reliability
- The scan speed is not limited by the undulator performance

Cons Taper:

- Complicated spatial structure of the beam
- Intensity variation of up to one order within one scan
- Energy bandwidth is limited
- Lower flux comparing to the single peak harmonic scanning

Energy/Undulator Scanning at PETRAIII

0.5 x 0.5 mm

boundary conditions:

homogeneous illumination of the sample 3rd harmonic/monochromator match within 2 eV over 1000 eV

LOM 500 - P03 (Micro and Nano Saxs/Waxs)

2 different beam paths:

- Si 111 crystal set (8 25 keV) and multilayer set (8.4 11.5 keV for 20 Å spacing)
- All optical components are LN2 cryocooled

Horst Schulte-Schrepping | Hard X-Ray Monochromators at PETRA III | May 12-13, 2014 | Page 18

LOM 500 – crystal set (Si 111)

1st crystal

2nd crystal and multilayer option on 2.5 m translation

LOM 1250 - P08 (High resolution diffraction)

- accepts monochromatic beam from high heat load monochromator
- higher harmonics suppression without additional mirrors

LOM 1250 – upgrade

four crystal pairs adding germanium crystals for higher intensity

Diamond / Silicon Laue Monochromator at Beamline P02.1

P02.1 Diamond

Mounted (100) E6-Diamond crystal (6.5mm x 6.5mm x 0.4mm)

Laue case (111), liquid Gallium/Indium interface, indirect water cooling from the bottom

Horst Schulte-Schrepping | Hard X-Ray Monochromators at PETRA III | May 12-13, 2014 | Page 23

ML06 – LN2 cooled Multilayermonochromator at P06

Developed and build in collaboration with:

A. Donath and H. Lüdecke (DESY-Zeuthen), G. Falkenberg (DESY-Hamburg)

Increased Flux for XRD and Pink beam Laue diffraction

- Pair of flat Si-mirror (Zeiss) substrates (200 x 25 mm²)
- Coated (AXO) with 2 ML stripes of different d-spacing, 1 metal mirror stripe
- Energy range 10 100 keV
- distance of multilayers: 0.22 3.91 m
- both crystals cryogenically side cooled
- Installation of mechanics in 2011

Cryo-cooled Multilayer Set

Multilayer Specifications (AXO Dresden)

200 mm

Mirror	M1			M2		
Coating	Pd/B ₄ C	Ni/C	lr	Pd/B ₄ C	Ni/C	lr
Period thickness [nm]	2.519	3.224	34.7	2.522	3.211	34.7
Peak reflectance R @ Cu K α [%]	44.7	69.7	-	42.1	65.3	-
Resolution $\Delta\theta$ /tan θ [%]	1.53	1.90	-	1.56	2.05	-
Meridional uniformity σ [%]	0.06	0.04	0.11	0.06	0.04	0.11
Sagittal width (FWHM) [mm]	5.6	6.7	7.4	5.9	6.8	7.4

ML06 – LN2 cooled Multilayermonochromator at P06

Second multilayer system on long translation

Horst Schulte-Schrepping | Hard X-Ray Monochromators at PETRA III | May 12-13, 2014 | Page 27

First Beam

Installation of cryo-system and ML's in March 2013 First ML beam: Pd/B4C @ 11.8 keV (3rd harmonic)

Comparison ML/Crystal Optics

ML Pd/B4C (at 95m from source, 10ms)

Si-111 High-Heatload Mono

Installation of cryo-system and ML's in March 2013 First ML beam: Pd/B4C @ 11.8 keV (3rd harmonic)

30x more flux compared to Si111mono

C-Type Compact Monochromator Concept

D. M. Mills and M. T. King, Nucl. Instr. Methods 85, 341 (1983).

Horst Schulte-Schrepping | Hard X-Ray Monochromators at PETRA III | May 12-13, 2014 | Page 30

Basic Parameters

- Si-111 and Si-311 crystal sets,
- crystal set change by translation of vacuum chamber
- common central rotation
- ex-vacuum goniometer (Huber 420), in-vacuum encoder (Renishaw®)
- first crystal translates vertically
- second crystal translates tangentially
- Bragg angle 5° to 55.5°
- energy range: 2.4 22.6 keV, Si₍₁₁₁₎ 4.6 - 43.4 keV, Si₍₃₁₁₎

Completed Mechanics

O-ring sealed 400 mm flange (1). The goniometer is positioned outside the vacuum (not on the picture) and is coupled by a hollow-shaft ferrofluidic® sealed feedthrough to the common rotation. The first crystal pair (2) is indirectly water-cooled. The second crystal pair is mounted on a two-tilt cradle (4) and a piezo-driven micrometer (5). The unit may be translated along the beam (3). The Bragg angle position is determined with a Renishaw® optical encoder system (6).

Reproducibility

13 repetitive energy scans of a pressed powder pellet of $KCrO_4$. Total shift of the pre-edge position is < 0.06 eV with an average of 0.032 eV.

Outlook

ongoing and upcoming DCM work

PETRA III Extension beamlines

- 3 new cryo-cooled DCMs
- 3 C-type upgrade DCMs

Review and enhance stability of critical optical components - DCMs and Mirrors

further related talk:

Stability Issues at Monochromators and Mirrors, Ilya Sergeev

Thank you

Horst Schulte-Schrepping | Hard X-Ray Monochromators at PETRA III | May 12-13, 2014 | Page 35