

			-
he signi	iticant pr	operties c	of x-ravs
	The second se		
The second se			

		SACLA	vs SPring-8	
~500W/mm ²	Transverse coherence	100%	× 10 ⁴	
Heat load	Photons / pulse	5×10^{11}	× 10 ⁶	
SPeing 9	Pulse length	10 fs	×0.001	and a
	Peak power	29 GW	× 10 ⁹	- Andreas
	Repetition rate	60 Hz	× 10 ⁻⁷	- EF
High	Average power	<1 W	$\times \frac{1}{500}$	
repetition	Canada and a second		P	ulsed
rate	A Contraction		n	ature
and the second sec	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Coher	ence 🛓	
	S	Shot-to-s fluctuation	hot on	
These properties impose DCM on the			ALC ON	

1. DCM at SPring-8

SPring

- ✓ X-ray monochromators at SPring-8
 - Cooling of crystals for standard ID BLs at SPring-8
 - Stability improvement on SPring-8 Standard DCM
- 2. DCM at SACLA

3. Challenges on DCM for the next generation light source

13-14 May 2014 DCM Workshop @ESRF ,H. Ohashi (SPring-8)

Collaborators

H. Yamazaki, Y. Senba, H. Yumoto, T. Koyama, T. Takeuchi, H. Kishimoto, T. Miura, Y. Matsuzaki, M. Tanaka, Y. Shimizu S. Goto, M. Yabashi and T. Ishikawa

(JASRI/RIKEN SPring-8)

BL23SU JAEA Actinide Science (Japan)	Atomic Energy Agency)	JAEA Quantum Structural Science (Japan Atomic Energ	y Agency) BL22XU 🔵
BL24XU Hyogo ID (Hyogo Prefecture)		Medical and Ima	aging I BL20B2
BL25SU Soft X-ray Spectroscopy of S	Solid	Medical and Ima	ging II BL20XU
BL26B1 RIKEN Structural Genomics		Engineering Science Rese	earch I BL19B2
BL26B2 RIKEN Structural Genomics		RIKEN SR P	hysics BL19LXU
BL27SU Soft X-ray Photochemistry		BIKEN Coherent Soft X-ray Spectro	SCODY BL17SU
BL28XU RISING		SUNBEA	M BM BI 16B2
BL28B2 White Beam X-ray Diffraction			NBEAM Consortium)
BI 29XII BIKEN Coherent X-ray Ontics	111 Com	SUNBE	AM ID BL16XU
BI 311 EP Laser-Electron Photon II	28 27 26 25 24 23		NBEAM Consortium)
(Research Center for Nuclear Physics, Osaka University)	30 29 22	21 (National Institute for	or Materials Science)
BL32XU RIKEN Targeted Proteins		20 Engineering Science Rese	arch II BL14B2
BL32B2 RIKEN	33	JAEA Materials S	cience BL14B1
BL33XU TOYOTA	•//34 (— /)	17 (Japan Ato	mic Energy Agency)
(TOYOTA Central R&D Labs., Inc.)	/35	16 Surface and Interface Stru	ctures BL13XU
BL33LEP Laser-Electron Photon	Ma Beamline Mai	D 15 NSRF	RC BM BL12B2
BL35XU High Resolution Inelastic Scattering	/# A 37	14 (National Synchrotron Hadiau	
BL36XU Catalytic			earch Center)
(The University of Elect		INO OT BLS	s BL11XU
BL37XU Trace			nergy Agency)
BL38B1 Struct	Hard x-ray BLs		
		47	g BLOOKU
BL39XU Magn	r user applications		BL08B2
BL40X0 High I			
BL40B2 Struct	Coft y roy DIc		rsity of Tokyo)
BL41XU Struct	SOIL X-TAY BLS	5	s BL05SS
			n BL04B2
BLASLAD HIKEI	Others	5	h BL04B1
(Institute for Protein	Carlero	J	al BL 03XU
BL44B2 RIKEI	No of Dia in an areti	ор Г 7	e Consortium)
BL45XU RIKEI IOTAI	NO OT BLS IN OPERATION	on 57	n BL02B2
BL46XU Engineering Science Hesear	ch III	Single Crystal Structure A	nalysis BL02B1 🔵
BL47XU HAXPES·µCT			XAFS BL01B1

SPring-8 Standard DCM (SSDM)

a rotation (θ_B) + two translation ($Y_1 + Z_1$)

Diamond (direct water cooling)

Pin-post Si (direct water cooling)

v [Hz] Frequer

Frequency [Hz]

200 25

Cooling system of DCM on std-ID BLs					
6	2	10 BLs	Indirect Direct Indirect	Water Water LN2	Diamond Si(pin-post) Si
	2005				
		Diamond	Pin	-post Si	Si
		flat	Direct w	ater cooling	flat
				ALL THE REAL PROPERTY OF THE R	
		~ 300 W	~	300 W	~ 500 W

New Stable SSDM with LN2 cooling for std-ID BLs

SPring.

Turbulent suppressing flexibule tube "Clear Flow Flex"

SPring

After upgrading LN2-DCM

Angular fluctuation between the crystals :	1″	\rightarrow	0.15"
Intensity fluctuation of 1 Å x-rays :	5%	\rightarrow	2%

DCM for SACLA : Conceptual design

Contamination-free condition & High stability

→ UHV & Limited No. of axes and range

Optical design Use of large (90mm) Si with small offset (20mm)

Axis	Range	Resolution
θ	-1~30 [deg]	1 [µrad]
Х	60 [mm]	0.1 [mm]
⊿θ	±0.5 [deg]	0.1 [µrad]
⊿z	±1 [mm]	10 [µm]
Ту	±0.5 [deg]	1 [µrad]

Contamination-free condition & High stability

→ UHV & Limited No. of axes and range

New design of stages using flexure hinges

DCM for SACLA : performance test of $\Delta \theta$

Standard DCM of SACLA

Acknowledgement

Fabienne Mengoni, Raymond Barrett and organizing committee

Thank you for your kind attention!

ご清聴ありがとうございました!