

ESRF | The European Synchrotron

Overview and future needs for ESRF double crystal monochromators dedicated to spectroscopy

O. Mathon, P. Glatzel, M. Krisch, A. Rogalev, M. Salome, R. Tucoulou and S. Pascarelli

INTRODUCTION

Grenoble 1968, winter Olympic games

Workshop dinner, close to the Olympic springboard

... but also because we propose to adopt for the monochromator workshop ... the Olympic motto, proposed by Pierre de Coubertin on the creation of the International Olympic Committee in 1894...

Citius, Altius, Fortius

... which is Latin for "Faster, Higher, Stronger."

Also because the Olympic symbol, the rings could be a good illustration of the role of the mono ...central ... but inside a complex instrumentation chain

Double Crystal Monochromator for spectroscopy

- Overview of ESRF double crystal monochromators dedicated to spectroscopy

- Present status and future needs

- Monochromator specifications for spectroscopy applications

SPECTROSCOPY AT ESRF

At ESRF, 14 beamlines are performing spectroscopy activity (+ 1 soft ID32 + 1 EDXAS ID24) 6 ESRF beamlines 6 CRG beamlines

ID12	Polarization dependent spectroscopy	Linear and circular dichroism, XANES
ID16B	NINA	Nano-XRF, nano-spectroscopy
ID20	IXS 1	Inelastic X-ray scattering
ID21	X-ray microscopy	Soft X-ray Nano-XRF, nano-spectroscopy
BM23	EXAFS	EXAFS, XANES, micro-XAS, XRF
ID26	XAS-XES	Emission spectroscopy, XANES, EXAFS

BM01B	SNBL	Combined XRD/XAFS/Raman measurements in operando conditions
BM08A	Gilda	EXAFS, XANES, Refl-XAS
BM20B	RoBL	Radiochemistry XAFS
BM25A	SpLine	EXAFS-XANES
BM26A	DUBBLE	EXAFS, XANES, catalysis infrastructure
BM30B	FAME	XAFS on highly diluted materials, XES, XRF and microXAS

All of them use a Double Crystal Monochromator

ESRF BEAMLINES – MONOCHROMATOR TECHNOLOGY

	ID12	ID16	ID20	ID21	BM23	ID26
Туре	Fixed exit double cam	Fixed exit double cam	Fixed exit double cam	Fixed exit double cam	Fixed exit double cam	Fixed exit double cam
Manufact.	Kohzu	Kohzu	Kohzu	Kohzu	Kohzu	Kohzu
Crystals	111	111/311	111	111/220/ Multilayers	111/311/511	220/311
Angular stroke (°)	9 – 78	3 - 26	5 – 30	3 – 75	3 – 30	5-60
resolution	0.1 "	0.2 "	0.2 "	0.2 "	0.1 "	0.1"
Offset (mm)	-12.5	-12.5	Variable	-12.5	+25	-25
Cooling	He gas at -190 ℃, braids	LN2, side cooling	LN2, side cooling	N₂ at -4 ℃	LN2, braids	LN2, side cooling
Upgrade/ modification	Cooling	Cooling, Support	Cooling, geometry, Suppression of horiz. cam	Cooling	Cooling, Support, crystal cage	Cooling, motorization of the horiz. cam
Optimized for	Polarization, S/N	High energy with nano beam	Inelastic scattering	Low energy with micro beam	EXAFS, S/N, $\Delta E \mu XAS$	RXES, High flux

KOHZU DOUBLE CAM FIXED EXIT MONOCHROMATOR PRINCIPLE

The European Synchrotron ESRF

PERFORMANCE : REPEATABILITY

For a XAS beamline, the repeatability of the energy scale is crucial

PERFORMANCE : REPEATABILITY

For a differential measurement (XMCD, linear dichroism), where the difference between two successive spectra is performed, the repeatability of the energy scale is fundamental for the S/N ratio.

A. Ney and V. Ney, Linz University, Austria

PERFORMANCE : PRECISION

$$\frac{\Delta E}{E} = \frac{\Delta \theta}{tg \theta}$$

The energy at the edge can be calibrated But a reasonable precision should be maintained during the EXAFS measurement

 $k = 20 \text{ Å}^{-1}$, 1500 eV after the edge

$$\Delta E_{\rm max} = 0.5 \ eV$$

Error on photoelectron wave vector:

$$\frac{\Delta k}{k} = \frac{1}{2} \frac{\Delta E}{E_{kin}} = \frac{0.5}{1500} < 2 \ 10^{-4}$$

Demeter 0.9.13 © Bruce Ravel 2006-201

Error on distance:

$$\Delta R = R \frac{\Delta k}{k} < 2.5 \times 210^{-4} = 0.0005 \text{ Å}$$

PERFORMANCE : PRECISION

For multi edge XANES measurements, high precision is also necessary.

PERFORMANCE : STABILITY AT FIXED ENERGY

The stability of the beam intensity at fixed energy is very sensitive to any drift (thermal drifts or mechanical vibrations).

Important for XRF, combined diffraction and XAS in general ! Crucial for RXES

PERFORMANCE : STABILITY AT FIXED ENERGY

Mechanical stability, **vibration**: crucial for new applications like hyperspectral mapping where the **continuous scan** acquisition scheme is mandatory.

Upgrade of the monochromator support Kohzu metallic support \rightarrow ESRF granite support Upgrade of the cooling system He gas close circuit \rightarrow ESRF LN2 circuit

Main drawback of BM23 Kohzu monochromator

Crystal parallelism and "fixed" exit of the X-ray beam during scan In average for BM23 :

> 8 μrad/keV (8.5 μrad/deg.) 12 μm /keV (12.6 μm/deg.)

→ feedback on the piezo is mandatory to perform a XAS spectrum

Micro-beam trajectory in sample plane during an energy scan

- Si (111) monochromator -
- KB focused micro-beam _
- Energy range : 3 keV to 7.5 keV and back, 10 eV steps
- Angular range: 41.23 to 15.28 ° -
- Micro-beam position measured on fluorescence screen in KB focal plane with videomicroscope in BPM mode
- Δ =3µm in focal plane corresponds to $\Delta Ry = ~10 \mu rad$

The European Synchrotron

Micro-beam trajectory in sample plane during an energy scan

- 1- Beam movement is very reproducible
 - \rightarrow Present strategy : Compensation strategy "Spot tracking"
- 2 Better monochromator performance
 - \rightarrow Stronger specifications on $\Delta R_{v}, \Delta R_{x}$ and fixed exit

3 - Choice of the optical configuration to be less sensitive to monochromator imperfection

Vertical:

PERFORMANCE : AGEING BEHAVIOR

	ID12	ID16	ID20	ID21	BM23	ID26
Delivery	1993	1995	1997	1997	1993	1995

Remarkable longevity :

The DCM are operational and daily used for 20 years (ID12/BM23) !

Modifications have been done

- Cooling (all)
- Crystals mounting (all)
- Geometry (ID20)
- Cam system (ID26/ID20)
- Motors

Maintenance performed regularly

- Crystals
- Mechanics (principal gear, reduction)
- Motors
- Setup of the cam/translations

But certain parts have never been modified:

- Main axis
- Ferrofluidics seal

4 generations later !

The European Synchrotron

ESRF

PERFORMANCE : AGEING BEHAVIOR

	ID12	ID16	ID20	ID21	BM23	ID26
Delivery	1993	1995	1997	1997	1993	1995

... but start to suffer from ageing

Mechanical wear on the worm gears damaged and replaced

Main rotation motor replaced

Degradation of the energy scale stability around certain very used edges

... And also a conception that is perhaps not adapted to new spectroscopy challenges (thermal, vibration, control, global conception)

Ageing : clear checks and maintenance procedures

FUTURE REQUIREMENT : SCIENTIFIC AND TECHNICAL GOALS

	ID12	ID16	ID20	ID21	BM23	ID26
EXAFS	Y	Y	Ν	Y	Y	Y
XANES	Y	Y	Y	Y	Y	Y
XRF	Y	Y	Y	Y	Y	Y
RXES/RIXS/NRIXS	Y	Y	Y	Y	Y	Y
Final state E scan	Ν	Ν	Y	Ν	Ν	Y
Combined diffraction	Y	Y	Y	Y	Y	Y
Micro/nano beam	Y	Y	Ν	Y	Y	Y
XRF Mapping	Y	Y	Ν	Y	Y	Y
Hyperspectral mapping	Ν	Y	Ν	Y	Y	Y
Step by step	Y	Y	Y	Y	Y	Y
Continuous scan	Ν	Y	Ν	Y	Y	Y

No request for asymmetric cuts, detuning mode, sagittal focusing or polarization transfer specifications.

FUTURE REQUIREMENTS : XAS

	ID12	ID16	ID20	ID21	BM23	ID26
EXAFS	Y	Y	Ν	Y	Y	Y
XANES	Y	Y	Y	Y	Y	Y

• Cover large number of elements edges \rightarrow Accessible angular range of the mono

•Number and type of crystals mounted inside the monochromator

Scan the angle (energy) → K = 20 Å⁻¹ = 1500 eV after the edge
At high energy = 0.3 deg.
At low energy ... 20 deg.

	ID12	ID16	ID20	ID21	BM23	ID26
Min. Bragg angle (deg.)	7	3	5	10	2	4
Max. Bragg angle (deg.)	80	20	30	81	35	70
Nb. of crystals pairs	2	2	1	2 to 3	2 to 3	>2
Crystal types	111/?	111/311	111	111/311/?	111/311 /511	111/220 311/411
Scan angle range (deg.)	0.1 - 4	0.2 - 4	0.1 - 1	0.5 - 20	0.2 - 8	0.2 - 8

FUTURE REQUIREMENTS : XAS

	ID12	ID16	ID20	ID21	BM23	ID26
XANES	Y	Y	Y	Y	Y	Y
RXES	Y	Y	Y	Y	Y	Y

• Minimum angle step :

 \rightarrow Energy step needed linked to the core hole life time γ

- A minimum step resolution of $\gamma/20$ is needed ($\approx 0.1 \text{ eV}$ step at Fe K edge, for example) $\Delta \theta = 3 \mu \text{rad}$ at Fe K edge ... and $\Delta \theta = 0.5 \mu \text{rad}$ at W K edge
- Advanced spectroscopy : $\gamma/40$ could be needed

The European Synchrotron | ESRF

FUTURE REQUIREMENTS : ENERGY RESOLUTION

	ID12	ID16	ID20	ID21	BM23	ID26
EXAFS	Y	Y	Ν	Y	Y	Y
XANES	Y	Y	Y	Y	Y	Y
RIXS	Y	Y	Y	Y	Y	Y

•Energy resolution :

$$\Delta E / E = (\omega_D^2 + \Psi^2)^{1/2} \cot \theta_B$$

Darwin width $\omega_{\!\mathsf{D}}$ is linked to the crystal

 Ψ is a complex contribution that includes The divergence of the X-ray beam All deformations of the crystal that can affect the front wave (crystal fixation, thermal deformation, surface polishing ...) $\Psi \ll \omega_D$

	ID12	ID16	ID20	ID21	BM23	ID26
Intrinsic broadening Ψ (μrad)	< 1	< 1	< 1	< 4	< 1	<1

The European Synchrotron ESRF

FUTURE REQUIREMENTS : REPEATABILITY/STABILITY OF THE ENERGY SCALE

	ID12	ID16	ID20	ID21	BM23	ID26
XANES	Y	Y	Y	Y	Y	Y
Hyperspectral mapping	Ν	Y	Ν	Y	Y	Y

In static mode

For XRF, not so crucial \rightarrow < 1 eV at 20 keV (1 arcsec.)

For combined XRD \rightarrow < 1 eV at 25 keV (1 arcsec.)

In scanning mode From one scan to the other : repeatability in the order of 10 meV at Fe k edge $\rightarrow 0.5 \,\mu rad \,(0.1 ")$ on the main Bragg angle

Stability: Maintain the repeatability for 24H00

	ID12	ID16	ID20	ID21	BM23	ID26
θ _B repeatability (arcsec.) over 24H00	<< 0.1	0.1	0.1	0.5	0.1	< 0.1

FUTURE REQUIREMENTS : PRECISION OF THE ENERGY SCALE

	ID12	ID16	ID20	ID21	BM23	ID26
XANES (multi edges)	Y	Y	Y	Y	Y	Y
EXAFS	Y	Y	Ν	Y	Y	Y

EXAFS : the precision of the energy scale determines the precision on the distance of neighbors (over one EXAFS scan) \rightarrow 0.5 eV : 5 arcsec.

XANES/XMCD : multiple edges measurements (over 10 deg.) < 100 meV \rightarrow 1 arcsec.

	ID12	ID16	ID20	ID21	BM23	ID26
Angle precision (arcsec.)	< 0.5	1	1	1	1	< 0.5

FUTURE REQUIREMENTS : BEAM POSITION STABILITY (STATIC MODE)

	ID12	ID16	ID20	ID21	BM23	ID26
XRF	Y	Y	Y	Y	Y	Y
XRF maps	Y	Y	Ν	Y	Y	Y

Notion of stability in **static mode** is linked to the **duration of the experiment** (maps)

Constraints could be different between macro beam operation micro/nano beam operation

The stability requirements are defined **on the sample** and then interpreted in terms of thermal drifts, mechanical drifts and vibrations limits on the monochromator

	ID12	ID16	ID20	ID21	BM23	ID26
∆z, ∆y on sample over 24H00, unfocused (μm)	1 by 1	0.005 by 0.005	0.5 by 0.5	0.03 by 0.03	1 by 1 0.2 by 0.2	1 by 1

FUTURE REQUIREMENTS : BEAM POSITION STABILITY (SCANNING MODE)

	ID12	ID16	ID20	ID21	BM23	ID26
XANES	Y	Y	Y	Y	Y	Y
EXAFS	Y	Y	Ν	Y	Y	Y

Notion of stability in **scanning mode** is linked to the **angular range of the scan**.

Again, constraints could be different between macro beam operation micro/nano beam operation

The monochromator should be intrinsically stable and errors should be reproducible (lookup tables corrections) as much as possible. Residuals errors could be optimized with active feedback : control/communication issue

	ID12	ID16	ID20	ID21	BM23	ID26
∆z, ∆y on sample over 1 deg. (μm)	1 by 1	0.01 by 0.01	0.5 by 0.5	0.05 by 0.05	0.2 by 0.2	1 by 1
∆z, ∆y on sample over 5 deg. (μm)	1 by 1	0.025 by 0.025	NA	0.15 by 0.15	0.5 by 0.5	1 by 1
Δz , Δy on sample over 20 deg. (μ m)	NA	NA	NA	0.15 by 0.15	NA	NA

FUTURE REQUIREMENTS : BEAM POSITION STABILITY (SCANNING MODE)

	ID12	ID16	ID20	ID21	BM23	ID26
∆Ry over 1 deg. (μrad)	0.2	0.15	0.2	0.1	0.1	0.1
∆Ry over 5 deg. (μrad)	0.5	0.5	NA	0.2	0.25	0.25
∆Ry over 20 deg. (μrad)	NA	NA	NA	0.5	NA	NA
ΔRx over 1 deg. (μ rad)	0.2	1.5	3	0.7	0.7	0.7
ΔRx over 5 deg. (μ rad)	0.5	1.5	NA	1.4	1.4	1.4
∆Rx over 20 deg. (μrad)	NA	NA	NA	1	NA	NA
∆Rz (μrad)	10	10	10	10	10	10

FUTURE REQUIREMENTS : CONTINUOUS SCAN

	ID12	ID16	ID20	ID21	BM23	ID26
Continuous scan	Ν	Y	Ν	Y	Y	Y

Stability (vibration) issues are critical for continuous scan mode as the energy (angular) scale becomes also a time scale.

Bi-directional energy scan becomes important for rapid continuous scan.

Control issues:

The monochromator should communicate with the detection and with the source.

Complex trajectory of the Bragg angle could be envisaged Accurate measurement of the Bragg angle at full speed

	ID12	ID16	ID20	ID21	BM23	ID26
EXAFS (s/scan)	NA	3	NA	10	1	1
XANES (s/scan)	NA	1	NA	3	0.2	0.2

CONCLUSIONS

Vertical and Horizontal homogeneity of the requests

Angle range: Low energy / high energy monochromator compatible ?

We have presented a list of requirements for a future double crystal monochromator dedicated to spectroscopy....

.... That are in general a factor 10 more stringent than the present performance announced by the main industrial suppliers

and model and	ngle configuration	1010							
Meets of effect Dia Dia Dia Dia Dia Dia Dia Diagrame Min angle tap change to angle tap change to angle tap table tages 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2	ngle configuration			+ I					
Mon angle size, Mon angle size, Angle arresolution 3 3 3 4 10 4 7 accord in accord in accord in a second in	Max Bragg deg	:g. <u>20</u>	30		5	81	70	80	Energy range
Mn angle ten of angle and angle angle and angle resolution 0.1 0.2 0.1	Min Bragg deg	:g. <u>3</u>	5			10	4	7	
Min angle step change to Angle resolution angle step change to angle resolution step to region angle resolution step to									arcsec (0.1 " = 0.5 microrad) for doing
Angular resolution Image basis inspace Image basis inspace <thimage basis="" inspace<="" th=""> Image basis inspace</thimage>	Min angle step cha	ange to 0.1	0.2	4	1	0.2	0.1	0.1	scienctific experiments
Angular resolution Image in the standar space <									should be a fraction of the line above: 1/4
anda	Angular resolution								about (engineering feature)
negle statistics into into into into into into into into									
teal angle per disk of effective and effecti	angle total repeat								
total angle precision offer offer <thoffer< th=""> offer offer<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thoffer<>									
total angle precision gengle scale continuous scale vectory (AMS) 5 (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b									
total angle precision cellstoin cellstoin <thc> cellstoin cell</thc>									2 Absolute applies (deg) : presision de
Lock arige precision angle range book Continuous angle range book	And a set of the set o	finising.							Prostate angles (deg) - precision de
and errorse DAMS deg c n	total angle precision del	amuon		0.	r				EAAFS
general and energy DATA (see 1) And (see 1) <thand< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thand<>									
generation andle range DAVIS deg 4.0 NA 4.8 1.0 4.0.1 4.0.2 1.0.2 <th1.0.2< th=""> 1.0.2 <th1.0.2< th=""></th1.0.2<></th1.0.2<>									
angle range EAXS (eg 0-0.1 NA 0-1.3 20-0.2 10-0.2 20-0.3 deg Continuous scan visiony XAAS (s) 3 NA 0 100 10.4 100 100 100 100 100 100 100 NA 5 Continuous scan visiony XAAS (visit) 1 NA 0 200 1.1 NA 5 Continuous scan visiony XAAS (visit) 1 NA 0 200 1.0 NA 16 <td>ngle scans</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ngle scans								
angle range XMR5 eg 0.8 0.1 1.2 2.0.3 1.0.2 2.0.2 2.0.2 4 eg 4 eg Continuous scan visiony XMS my/et 1 NA 100 1 NA sm/dt Continuous scan visiony XMS my/et 1 NA 100 0.1 NA sm/dt Continuous scan visiony XMS iv 1 NA 0.0 NA sm/dt Continuous scan visiony VMS iv 1 NA 0.0 NA He Continuous scan respects VMMS iv 1 NA V V N He Trangular scan freegory XMS iv 1 NA V V V N He Trangular scan freegory XMS iv 1 NA V V V V N He Trangular scan freegory XMS iv 10	angle range EXAFS deg	g 4-0.1	NA	8-	0.3	40-2	8.0 - 1	15 - 0.5	deg
Continuous car webory PAXPS is not pict 3 NA victor 1 NA	angle range XANES deg	g 0.6 - 0.1	1-0.2	1-	0.2	20 - 0.8	1-0.2	2-0.2	deg
Continuous sar weichty XMXS ms/pt 1 NA AD AD </td <td>Continuous scan velocity EXAFS s</td> <td>3</td> <td>NA</td> <td></td> <td></td> <td></td> <td>1</td> <td>NA</td> <td>s</td>	Continuous scan velocity EXAFS s	3	NA				1	NA	s
Continuous sam velocity XMES is in the set of	Continuous scan velocity FXAFS ms	s/nt 1	NA			100	1	NA	ms/nt
Continuous scan vieto/involv4MES (work) 1 NA MA Ma <td>Continuous scan velocity XANES s</td> <td>1</td> <td>NA</td> <td>0</td> <td>2</td> <td></td> <td>0.1</td> <td>NA</td> <td>c</td>	Continuous scan velocity XANES s	1	NA	0	2		0.1	NA	c
Continuous scale vieworky ANRs mpt /r 1 MA 1 MA 1 MA 1 MA 1 MA Find of the set motion of the set o	Continuous scan velocity Addeds	1	11/4		5	100	0.1	19/4	5
step by tep mote velocity (v/leg Continuous San frequency XANS it: Tanguate scalin frequency XANS	Continuous scan velocity XANES ms	s/pt 1	NA			100	1	NA	ms/pt
Continuous Scan frequency RAMS Hz 1 NA C 0.1 MA Hz Continuous Scan frequency RAMS Hz 1 NA I I NA Hz Transplar scan three based V N V	step by step motor velocity s/d	deg 3(no spec)	3					NA	s/deg vitesse moteur
Continuous Sam frequency XMMS Hz 1 NA Image Sam frequency XMMS Hz 1 NA He Triangular sam frequency XMMS Hz V	Continuous Scan frequency EXAFS Hz	1	NA				0.1	NA	Hz
Tangular sca merey based continuous scan v	Continuous Scan frequency XANES Hz	1	NA				1	NA	Hz
Trianguizrease force based software V	Triangular scan time based								
Integration of the methods Y N Y Y Y Y N Fixed Every stallity in time insv(stay 23.8 50 100 50 100<	Triangular scan Energy based								
Lambe base 1 N Y Y Y N Istep by typ Y	continuora scan chergy based	×	N				м	N	
Site by step Y <t< td=""><td>continuous scan</td><td>Y</td><td>N</td><td>+ 1</td><td></td><td>У</td><td>y</td><td>N</td><td></td></t<>	continuous scan	Y	N	+ 1		У	y	N	
Fixed energy Y Y Y Y Y Y Y Y Image regulability inter mer/day a7 keV = 0.5 microad (9x a7 keV =	step by step	Y	Y	-		y y	y y	Y	
Fixed energy stability intime image regeable with a state of the methanic image regeable with a st	Fixed Energy	Y	Y			y	y	Y	
Hvsd exergy stability interime 1 - <th< td=""><td>Fixed energy stability in time me</td><td>eV/day 23.8</td><td>50</td><td>1</td><td></td><td>100 over 12 H</td><td>100</td><td><10</td><td>10 meV/day at 7 keV = 0.5 microrad</td></th<>	Fixed energy stability in time me	eV/day 23.8	50	1		100 over 12 H	100	<10	10 meV/day at 7 keV = 0.5 microrad
angle repeatability forward 10 10 10 50 10 -00 rest at 7 keV angle president forward 100 100 10 20 1007 10/100 -00 angle president forward 100 100 10 2 1007 10/100 -50 angle president forward 100 100 10 2 1007 10/100 -50 billisation time constant to energy change m 10 10 0 0.1	Fixed energy stability in time	1							microrad/day at 7 keV = 0.5 microrad
Large representation Lo Lo <thlo< th=""> Lo Lo Lo<td>angle reneatability forward</td><td>10</td><td>10</td><td></td><td></td><td>50</td><td>10</td><td><10</td><td>meV at 7 keV</td></thlo<>	angle reneatability forward	10	10			50	10	<10	meV at 7 keV
ange representing values au a	angle repeatability forward	10	10			50	10	~10	Inc v ut / NE V
angle precision forward 100 100 100 1007 10/100 4:50 meV depends on the store min (for a large angle change regression take energy near and a store regression take energy near and a st	angle repeatability backward	10	10			50	10	<10	
angle precision backword 100 <td>angle precision forward</td> <td>100</td> <td>100</td> <td>10</td> <td>15</td> <td>100?</td> <td>10/100</td> <td>< 50</td> <td>meV depends on the stroke</td>	angle precision forward	100	100	10	15	100?	10/100	< 50	meV depends on the stroke
state step informal Stability Image: State step of the step in	angle precision backward	100	100	10	?	100?	10/100	< 50	
abilised inter constant to energy change inno 10 <th1< td=""><td>setup Thermal Stability</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	setup Thermal Stability								
regv merma secting time borng staring 0	isation time constant to energy change mn	n 10	10			10	NA(10)	~ 2	mn (for a large angle change >3 deg)
eight methanis securing one during stamming 0.3 0.1 0.1 0.1 0.1 0.1 0.01 0.1 0.01 0.01 0.01 point, tree angle) Temperature second crystal K 130									c (Time range to get new stable energy co
Temperature first cyclal K 0.00 130	r mermai setting time during scanning	0.3	0.1	0		0.1	0.1	0.1	point step angle)
Temperature score dystal K 1.30	Tomporatum first courtal \$K	120	120	1	5	120	120	120	v
Temperature sound cystal K 130 </td <td>Temperature Inst crystal K</td> <td>130</td> <td>130</td> <td>1.</td> <td><u> </u></td> <td>150</td> <td>150</td> <td>130</td> <td>N</td>	Temperature Inst crystal K	130	130	1.	<u> </u>	150	150	130	N
Temperature of the mechanics Image: Second	Temperature second crystal "K	130	130	1	p	130	130	130	similar to the 1st crystal temperature
Temperature of the mechanics Image: constraint o									
stal parallelism (sethout feedback component) Image: Stal parallelism (sethout feedback component) <td>Temperature of the mechanics</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>>5</td> <td>°c</td>	Temperature of the mechanics							>5	°c
All parallelism (without feedback correct) All cardic und All cardicar All cardic und All cardic un									
Ally static unit Ally static unit <t< td=""><td>narallelism (without feedback correction)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	narallelism (without feedback correction)								
Alty static und Ak varie und Ak varie und Alty static und ak varie und ak varie und Alty static und ak varie und a	pulaterisin (warbat recablet correction)								
Any state und ANy state und 0.15 1 5 0.5 0.5 0.5 ARk during scan und 3 3 1 10 microna 30 m + K 1 1 ARk during scan und 3 3 1 10 microna 30 m + K 1 1 DRV Parallelism over 10 degree und 5 5 0.2 2.5 2 DRV Parallelism 10 degree und 5 5 0.2 Omicrona 30 m + K 2 DRV Parallelism 10 degree und 5 5 0.2 Omicrona 30 m + K 2 DRV Parallelism 10 degree und NA NA NA NA(10) 2 DRV Parallelism 10 degree und NA NA NA NA NA DRV Over St und NA NA NA NA NA DRV Over St und NA NA NA NA NA DRV Over St und NA NA NA NA NA DRV Over St und NA NA NA NA S DRV Over St und NA NA NA NA S DRV Over St und NA NA NA NA S DRV Over St und NA NA NA S	40				-				
Abs: state: prof.	Aky static µrd	a			-				
Ally during scan unit 0.15 1 1 0 0.5 0.5 microad (Parallelism error. Alls during scan unit 3 3 1 1 Dit D microa 30 m + K 1 microad (Parallelism error. Alls during scan unit NA(10) 30 1 NA NA(10) 1 microad (Parallelism error. Dith Parallelism oblegree unit 5 5 0.2 Omicroa 30 m + K 2 microad (Parallelism oblegree unit NA S S S S S S S S S S S S S<	AKX STATIC µrd	a			-				
Liny burning Lun Linu Linu <thlinu< th=""> <thlinu< th=""> <thlinu< th=""></thlinu<></thlinu<></thlinu<>	ARy during scan urd	n 0.15	1				0.5	0.5	microrad (Parallelism error over 1 degree)
Abc during scan and 3 3 3 1 Dimicron a 30 m + K 1 microna (Parallelism error of the previous (Parallelism error of the previous (Parallelism of the parallelism of the parallelis	Early during scale pro	5 0.15	-				0.5	0.3	merorad (rataliensmerror over 1 degree,
Axe during scale units 3 3 3 3 1									
Abt during scale Indiana NA (10) 30 3 NA NA (10) 1 incroad (Parallelism error Dity Parallelism Odegree urd 1.5 5 2 0.2	ΔRx during scan µrd	d 3	3	1			10 micron a 30 m + K	1	microrad (Parallelism error over 1 degree)
Abit during scan, jud NA(10) 30 1 NA NA(10) 1 microrad (Parallelism energy of the parallelism energy of the parallelism over 10 degree jud 1 S 5 2 0.2 2.5 2 Dith Parallelism Odegree jud 5 5 5 0.2 Omicrona 30 m + K 2 Dith Parallelism Odegree jud NA NA NA NA(20) 2 Dith Over of jud NA NA N 3 NA Dith Over of jud NA NA N 3 NA Dith Over of jud NA NA N 3 NA Dith Over of jud NA NA N 3 NA Stal setup Mechanical stability Dith Over of jud NA NA NA NA Dith Over of jud NA NA NA NA S 1 by 1 2.52.5 over (5 Static not focused Dith Over of jud 0.005 x 0.005 0.55 0.2 5 5 5 5 2.62.5 over (1 Static foc focused Dith Over o									
Dby Parallelism Over 10 degree und Dby Parallelism 10 degree und Dby Para	ΔRz during scan µrd	d NA(10)	30	1		NA	NA(10)	1	microrad (Parallelism error over 1 degree
DBP Parallelism Ublegree urd 1.5 5 3 0.2 00: 2.5 2 DBP Parallelism Ublegree urd 5 1.5 5 0.2 00: 00: 00: 00: 00: 00: 00: 00: 00: 00:			-						
DRk Parallelism 10 degree jud 5 15 5 02 Omicron a 30 m + K 2 DRk Parallelism 10 degree jud NA S Image: Second	DRy Parallelism over 10 degree µrd	d 1.5	5	1	_	0.2	2.5	2	
DR: Parallelism 2degree jurd NA(10) 30 5 NA NA(10) 2 DR: Over 45 jurd NA NA N N 3 NA	DRx Parallelism 10 degree µrd	d 5	15	5		0.2	0 micron a 30 m + K	2	
DPR Over 45 µrd NA NA NA NA NA NA S S NA DR: over 45 µrd NA NA NA NA S S NA Stal setup Mechanical stability 0:07 Discourt 43 NA NA S NA S S NA DD: Op transple position-typically ison 0.005 x 0.005 0.59 y 0.5 1 b 1 11by 1 2.592.5 wer if Static focused DD: Op transple position-typically ison 0.005 x 0.005 0.59 y 0.5 1 b 1 11by 1 2.592.5 wer if Static focused DD: Op transple position-typically ison 0.005 x 0.005 0.59 y 0.5 0.20 0.2 55 y 5 -2.52.5 wer if Static focused Stal setup isome of oprintal types 111/111 111 111 111/111/CPP 111/201/CPP 111/20	DRz Parallelism 10 degree µrd	d NA(10)	30	5		NA	NA(10)	2	
DRx over 45 µrd NA Solution state of the state of th	DRy Over 45 und	d NA	NA	N		3	NA		
Link State Series Not Not Not S Not stal setup Mechanical stability Dz. Dy	DRy over 45 pro	d NA	NA	NI NI		3	NA		
stal setup Mechanical stability D: Oy OS v 0.005 0.5 by 0.5 1 by 1 25:0.5 seer (5 static not focused Dr. Oy at sample position-typically im 0.05 v 0.05 0.5 by 0.5 1 b 1 by 1 25:0.5 seer (5 static not focused Dr. Oy at sample position-typically im 0.05 v 0.05 0.5 by 0.5 1 b 1 by 1 25:0.5 seer (5 static not focused Dr. Oy at sample position-typically im 0.005 x 0.025 0.5 by 0.5 0.2 b 0.2 by 0.5 5 by 5 5 b	Dix Over 45 µrd		1974	TN.		3	1924		
stal serve Mechanical stability De-Dy De-Dy <thde-dy< th=""> De-Dy De-Dy <</thde-dy<>				-	-				
Lata setup Mechanical stability Dc-Dy Correspondence Dc-Dy Correspondence Dc-Dy Dc-Dy <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
Dc-Dyl DLDy at sample position-typically im DLDy at sample position-typically im DLD y at sample position-typically im OCS + 0.05	setup Mechanical stability				_				
Db:Dp at sample position-typically ium 0.005 x 0.005 0.5 by 0.5 1 bit 1 bit 1 bit 2 bits 2 bits <th2 bits<="" th="" thts<=""> 2 bits <th2 bits<="" td="" tht<=""><td>Dz-Dy</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th2></th2>	Dz-Dy								
Db. Dy at sample position-typically ign 0.005 x 0.005 0.5 by 0.5 1 bit 1 bit 1 bit 1 bit 2 bits 2 bits <th2 bits<="" th="" thts<=""> 2 bits 2 bits<td>Dz, Dy at sample position-typically um</td><td>n 0.005 x 0.005</td><td>0.5 by 0.5</td><td>1 b</td><td>1</td><td></td><td>1 by 1</td><td>2.5x2.5 over</td><td>E Static not focused</td></th2>	Dz, Dy at sample position-typically um	n 0.005 x 0.005	0.5 by 0.5	1 b	1		1 by 1	2.5x2.5 over	E Static not focused
Dz. Dy at sample position - typically im um NA NA Sb S Sb y S 25.25 yes	Dz, Dy at sample position-typically um	n 0.005 x 0.005	0.5 by 0.5	1 h	1		1 by 1	2.5x2.5 over	E Static focused
Internal load Internal	Dz Dv at sample position-typically um	n NA	NA	5 h	5		5 by 5	2 5x2 5 over	not focused operation ?
Imm Current values User values <t< td=""><td>==,=, accompre posicion cypically prin</td><td>0.0050.005</td><td>0.5 0.5</td><td>0.27</td><td>0.2</td><td></td><td>5 by 5</td><td>-0.050.05</td><td>focured operation</td></t<>	==,=, accompre posicion cypically prin	0.0050.005	0.5 0.5	0.27	0.2		5 by 5	-0.050.05	focured operation
Number of crystal 2 1 28/3 2 to 3 >2 2 Crystal types 111/311 111 111 111/312/31 111 111 111/312/31 111/312/31 111/312/31 111/311 111/312/31 111/311/31 111/312/31 111/311/31 111/312/31 111/312/31 111/312/31 111/312/31 111/312/31 111/312/31 111/312/31 111/312/31 111/312/31 111/312/31 111/31 111/312/31 111/31 111/312/31 111/31	μm	0.025 x 0.025	U.5 UY U.5	U. 2 D	0.2		SUYS	~J.UDXU.U5	rocused operation
Number of crystal 2 1 2013 322 22 Crystal yraps 11/13/11 11/11	setup								
crystał typesi 111/311 111 111/311/21 111/311/311/3	Number of crystal	2	1	2 to	3	2 to 3	>2	2	
crystal size imm 25 s 50 ? 25 s 80 25 s50 (for the mome 25 s50)/25 s25 scile size: width - length Asymmetry 0	crystal types	111/311	111	111/	11	111/311/KTP	111/220/ 311/ 400	Si 111 / Beryl	
Asymmetry 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	crystal size mn	m 25 x 50	?	25 x	50	2	5x50(for the momer	25x50/25x25	active size: width - length
stal parallelism with pleso correction 0.1 0.2 0 0 0.1 0.2 Hand V in microrad with pleso correction Crystal parallelism, benry und 0.35 0.2 0 0 0.1 0.2 Hand V in microrad with pleso correction Crystal parallelism, benry und 3 and 0.15 3 0.2 and 0.12 0.2 and 0.12 0.2 and 0.12 Omicron a 30 m + kt Intrinsic broadining of the reflexion und <1?	Asymmetry	0	0	C		C	0 0	0	
Crystal parallelism, Energy urd 0.15 0.2 0 0.1 0.2 microsod with plebo correct Hand V in incorad - This variable of the correct of the c	parallelism with piezo correction								
Crystal parallelism, position µrd 3 and 0.15 0.2 v v v v v v v v v v v v v v v v v v v	Costal parallelism Economicut	d 0.15	0.2			0	0.1	0.2	microrad with piezo correction
Crystal parallelism, position µrd 3 and 0.15 3 0.2 and 0.12 0.2 and 0.2 0micron a 30 m + K 0.2 comparison at a caceptable movement on the sample (Intrinsic broadining of the reflexion µrd 4.1? 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	crystal paramensin, Ellergy µru	. 0.13	0.2	0.		0	0.1	0.2	Hand Via minimed The
Crystal parallelism, position µrd 3 and 0.15 3 0.2 and 0.12 0.2 and 0.2 0 micron a 30 m + K 0.2 micr					1				n anu v in microrad - This value
Intrinsic broadining of the reflexion µrd <1? <1 < <4 0.7 <1 microadining of the reflexion µrd <1? <1 << <4 0.7 <1 microadining of the reflexion µrd <1? <1 << <4 0.7 <1 microadining of the reflexion µrd <1? <1 <1 microadining of the reflexion µrd <1 microadining of the reflexion µrd <1? <1 microa	Crystal parallelism instition und	d 3 and 0 15	3	0.2 and	0,12	0.2 and 0 2	0 micron a 30 m + K	0.3	corresponds to a acceptable beam
Intrinsic broadining of the reflexion and care care care care care care care care	a yaa paranensin, posidon pro		1					5.2	movement on the sample (spatial
Intrinsic broadining of the reflexion jurd <1? <1 << <4 0.7 <1 microrad with beam am Thermal load									requirement) range ?
m Thermal load Beam size 1x1 1X1 15y1 1x1 1x1 1x1 1x1 1x1 1x1 1x1 1x1 1x1 1	Intrinsic broadining of the reflexion und	d <1?	<1	<		<4	0.7	<1	microrad with beam
m Thermai load Beam Size 1x1 1X1 1551 1x1 1x1 mm (HxV) on mono PWHM?	section and a section of the remeator pro-		~~				5.7	~	
Beam size 1 x 1 1X1 15, 1 1x1 1x1 1x1 1x1 1x1 1x1 1x1 1x1 1x1	hannel land			-					
Beam size 1 x 1 1X1 1551 1x1 1x1 mm (HxV) on mono FWHM?	nermai load								
Man Develop develop (man 2	Beam size	1 x 1	1X1	15 >	1		1x1	1x1	mm (HxV) on mono FWHM?
wiak rower density w/mm2 10 500 W/mm2	Max Power density w/	/mm2		10				500	W/mm2
Max total power w 10 W-Check consequences of m	Max total power w			10					W-Check consequences of new lattice

CONCLUSIONS

And for the double crystal monochromator dedicated to spectroscopy ... the winners are....

Thank you for your attention

