Overview of performance and improvements to fixed exit double crystal monochromators at Diamond

Andrew Dent, Physical Science Coordinator, DLS

Overview

Positional stability

Positioning resolution of mono motion usually << source size Floor vibrations ~ 20 nm << source size

Angular Stability

Frequency response...

At the end (sample, slit, focussing optic...)

"Blurred" image if collection time >> rate of vibration

Lots of movement if collection time ~ rate of vibration

Collection time < rate of vibration but beam position is somewhere within +/- $4\sigma_{vibration}$)

Two frequency requirements:

Slow --- drifts Fast --- vibrations

Example of impact on DLS beamline

I04 Example

Compound Refractive lens to focus source

Optics design value - $0.5 \ \mu m$ at sample

Monochromators vibrations produce effective source size x4 larger than actual

Requirements (Past)

Instability < %10 beam size

2nd Gen source, mono typically at 20m, Source size 100 µm (rms)

For 1:1 focusing 10% movement corresponds ~ 250 nrad rms vertically

For DLS, mono typically at 30m, Source size 123 x 6.8 µm (rms)

Requirements (now and future)

Instability < 2% beam size, coupling reduced from 1% to 0.3% (8 pm V emittance)

Mono typically at 30m, Source size 123x3.7 µm (rms)

For 1:1 focusing 2% movement corresponds ~ 1 nrad rms vertically. Other sources already proven 1 pm V emittance

Much more relaxed in the horizontal direction, but with new Multi-achromat sources and upgrades, FEL's; will become more important

Strongly depends on beamline design and requirements

Monochromator performance

Performance of cryo monochromators

Source	Vibration (rms)	Туре	
I18/I22	450 nrad*	Vertical bounce-up	
MX (I04)	350 nrad	Vertical bounce- down	
I11	~500 nrad	Vertical bounce-up	C Thomas <i>et al</i> 2012 <i>JINST</i> 7 P01014

*The initial value was higher than this, but simple clamping of pipes and other minor changes helped a lot. A full redesign was required to reduce further, see A. Peach talk on crystal cage update

Monochromator performance

Best of (some) of the rest....

Source	Vibration (vertical)	Estimate (rms)	Comment
Australian Light Source	0.5 µm @ 20m	<20 nrad	Horizontal DCM- low power

Performance – water cooled monochromator

Source	Vibration	Estimate (rms)	
B18	1µm rms @ 12m	<40 nrad	

Overview of the Measurements

- Motion measured with fast X-ray camera (400 Hz)
- Assumed no contribution from mirrors
- DCM motion calculated from geometrical optics
- Source motion measured using BPM's sampled at 10 KHz

Photon Beam Movement on I15

Source motion in unfocussed mode

Photon Beam Movement on I15

Source motion in focussed mode

Photon Beam Movement on I11

Bloomer et al J Phys Conf Ser 425 (2013), 042010

Long Term Stability on I11 and B16

Depending on crystal cage mass, can reject vibrations to ~ 50 Hz

Geometric Calculations

 α : angular motion of the DCM inducing 1µm vertical displacement at sample; no focusing $\alpha = 1/2(D_s - D_{DCM})$ General beamline layout above, but it is different for I10, I11, I16 For each case the layout as given on beamline web pages has been used to calculate a geometrical factor α

Focusing:
$$M = \frac{D_S - D_M}{D_M}$$
 $\alpha =$

Geometric Values

Beamlines	D _{DCM} (m)	D _M (m)	D _s (m)	α (nrad / μm)
107	25	28	47	30
104	28	33	40	84
110 (PGM)	-	-	-	286
J04 (Horz)	24	38	44	132
l15	25	29	47	23/32
111	27	-	47	25
116	DCM r exam	now channel-cut w nple ID01 A. Diaz e	vith additional focu t al. JSR 17, (2010)	issing: , 299
124	33.6	39.2, 45.7	46.4	590
B18	22	25	37.5	45
				Diamond

100

Vertical beam stability for DLS beamlines

Beamline (date)	Beamline	Vert. r.m.s Reson Beam nce size (Hz) (µm)	Resona	Amplitude		DCM angular	Total motion : @200Hz		DCM Total
	(date)		am nce e (Hz) n)	(μm)	(%	motion (nrad)	(μm)	(%	angular motion (nrad)
	107 (08/2010)	80	24.8 40 43	1.7 3.5 1.5	2.1 4.3 1.8	100 200 90	7.9	9.8	240
	104 (07/2010)	23	43 39 34 25	0.8 0.3 1.5 1.1	3.4 1.3 6.5 4.8	130 50 250 180	3.8	16.5	320
	104 (02/2013)	27	21 27 73	0.06 0.5 0.4	0.2 1.8 1.5	3.6 30.7 24.6	1.6	5.9	134
	l10 (09/2012)	45	1/f noise motion	-	-	-	Hor. : 0.35 Vert. : 0.4	0.9	100 114

Vertical beam stability for DLS beamlines

Beamline		Vert. r.m.s Beam size (µm)	Vert. r.m.s Beam size (µm)	Amp	Amplitude DCM angular		Total motion : @200Hz		DCM Total
(date)	(μm)			(%	motion (nrad)	(μm)	(% σ _v)	angular motion (nrad)	
	J04 (02/2013) (hor.)	24	22 24 71	0.04 0.03 0.16	0.16 0.12 0.66	5 3 19	0.46	1.9	61
	I15 (03/2013)	37 (focusse d)	1.6 22 24 104	0.2 0.2 0.1 1.0	0.54 0.54 0.27 2.7	6.7 6.7 3.3 33	2.6	7.0	122
	11 (03/2012)	120 (slit)	65 43 24 15	2 2 2.4 2.6	-	50 50 60 65	19	-	475

Vertical beam stability for DLS beamlines

В	Beamline	Vert. r.m.s	Vert. r.m.s Beam size (µm)	Amplitude DC an		DCM angular	Total motion : @200Hz		DCM Total
	(date)) Beam size (μm)		(μm)	(% σ _v)	motion (nrad)	(μm)	(%	angular motion (nrad)
	116 (04/2007)	60	68 48 31 19	4.7 1.4 0.7 0.9	7.8 2.3 1.1 1.5	-	8.7	14.5	-
	124 (12/2012)	4.4	21 39	0.7 0.11	15 2.5	330 47	1.0	23	590
	124 (12/2012) piezo off	4.4	21 39 1/f noise	0.1 0.15	2.5 3.4	47 51	0.6	13	355
	B18 (03/2010)	60	50 19 1/f noise	0.02 0.02	0.03 0.03	1 1	0.96 mostly 1/f	1.6	43

Monochromator improvements

I18/I22 Improved crystal cage: Andy PeachI09, I23 DLS built DCM using DC motor, air bearing: Jon Kelly

Source	Vibration (rms)	Туре
I18/I22	80 nrad	Vertical bounce-up
I09	78-49 nrad*	Vertical bounce-up
I23	49-27 nrad*	Vertical bounce-up

*Vibration data was measured in commissioning and under different conditions, hence variation

B16 Test Beamline

- Flexible & versatile to enable wide range of experiments
- Large energy range (4 keV 45 keV)
- Several operational modes: mono, white, micro-focused, ...
- Range of beam sizes : 1 micron to 100 mm
- Essentially a general purpose beamline

B16 Experiments Hutch

High Spatial Resolution Detector

- <0.5 μ m ideal resolution
- 4008x2672 pixels, 44dia
- 2x to 40x objectives
- 16 bit dynamic range
- several scintillators

Detectors

- PCO4000 & PCO.edge high resolution
 - Pilatus 300k area detector
- Image Star 9000 :135mm dia CCD
- Merlin (medipix based)
- VORTEX spectroscopy, APD, X-ray eye, PIPS diode

Thermal Issues

On I18 at long acquisition times (2-8s) get better data by reducing the heat load on the monochromator. Thermal load on I20 wiggler beamline not being well managed.

Measurements carried out on B16: Simon Alcock talk

Optimisation of Monochromator crystal configurations for increasing Synchrotron Powers (PhD program)

Dr Peter Docker Diamond Light Source, Campus, Didcot, Oxon OX11 0DE **Professor Mike Ward** Birmingham City University B4 7XG

Conclusions

Scope for improvement across Diamond beamlines New in-house designs and retrofits 109/123/120/113/122/118

Need better interaction and collaboration with supplier If we can get x6 improvements, so can they.... (precision metrology lab and B16): Simon Alcock

Licensing our knowledge or defining preferred designs Mono tenders still specification based Leaving the supplier to come up with solutions ??

Feedback control - A standard approach or hardware solution?

Acknowledgements

- Paul Quinn
- Cyrille Thomas and Chris Bloomer
- Simon Alcock
- Andy Peach
- Jon Kelly
- Peter Docker

