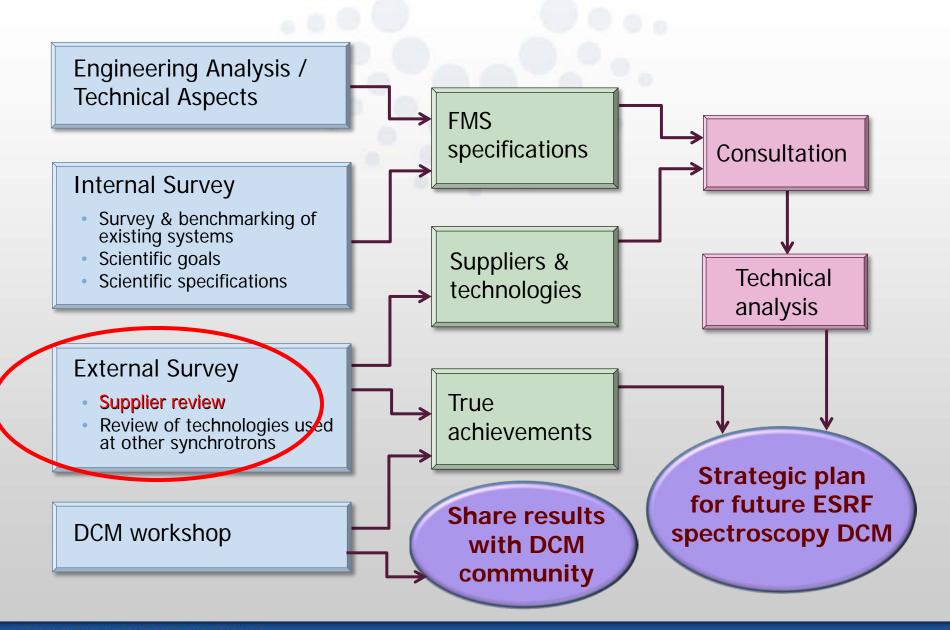
A light for Science

ESRF DCM Workshop 13th & 14th May 2014

Industrial Suppliers - An Engineering Overview

ESRF FMS Working Group

European Synchrotron Radiation Facility



- DCM Working Group tasks & goals
- Task #2 Supplier review
- Identified / shortlisted industrial suppliers
- Supplier survey concept
- Survey results
 - Chassis structure
 - Mechanical support & vessel
 - Bearing & crystal parallelism
 - Load distribution
 - Thermal load management
- Identified critical points
- Conclusion

Industrial Suppliers - Engineering Overview

A light for Science

European Synchrotron Radiation Facility

ESRF Double Crystal Monochromator Workshop -13th & 14th May 2014

Working Group task #2 – Supplier Review Sub - tasks

- Establish a list of possible suppliers
- Request documentation
- Shortlist suppliers mastering required technologies
- Request specific information (survey)
- Visit suppliers for technical discussions
- Define recommended supplier & strategy

Identified Industrial Suppliers – Shortlist

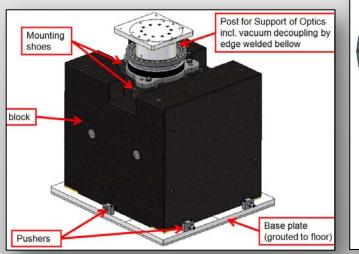
After contacts with known suppliers and synchrotron community users

Company	Origin	Details
Kohzu	Japan	 Strong past experience in novel designs (cam) Good service record over 20 years at ESRF
Toyama	Japan	 Strong recent involvement with SPring-8 Close collaboration with users for development
FMB - Oxford	United Kingdom	 Number of monos supplied worldwide Experience with LN₂ systems
IDT	United Kingdom	 Young, expanding company Good reputation in state of the art design (air bearing)
Bruker	Germany	Impressive in house resourcesRadically different design principles
Cinel	Italy	Complete in house production expertiseFlexibility, open to collaboration

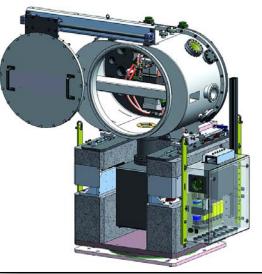
Survey Document - "Open" type questions

- Understanding of critical points
- Strategy towards development

Category	Information requested
Chassis structure	Type, floor interface, mechanics interface
Bragg angle drive	Motor, bearings, range, speed
Crystal parallelism during scan	1° and full range angular errors, distortion
Vacuum	Feedthrough, base pressure, RGA
Encoder on Bragg angle	Mounting details, air side or vacuum
Pre alignment	Techniques used, vacuum forces
Fixed exit technique	Displacements & guide type
Mechanical load distribution	Cantilever on Bragg bearing
Vibration & thermal stability	Performance, FEA, analysis
Thermal load management	Cooling system, Compton, deformation
Strong points w.r.t. market	Supplier assets


Chassis Structure

Supplier specificities:


- Welded steel structure & adjustable feet, or granite option
- Height adjustment is a source of instability direct grouting to floor
- Natural granite & wedge adjusters, plus Sorbothane_{TM} pads
- Lockable wedge type feet
- grouted synthetic granite & 3 DoF jacks

Comments:

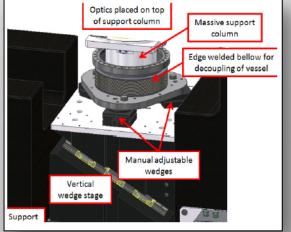
- Manual adjustment in all directions considered essential
- Adjustable feet not recommended
- High stiffness, thin layer, large area grouting highly recommended

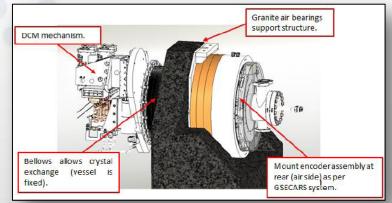
European Synchrotron Radiation Facility

ESRF Double Crystal Monochromator Workshop -13th & 14th May 2014

Mechanics Support & Vacuum Vessel

Supplier specificities:

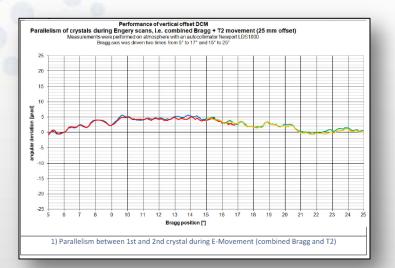

- All in vacuum solution, ex vac wedge adjusters and bellows. No rotary feedthrough.
- Lubrication & wear under vacuum? Vac compatible encoder?
- Large bellows between vessel and mechanics support
- Vessel & mechanics on same TY (requires entrance & exit bellows)
- Cinel: Only supplier not using Ferrofluidic seal

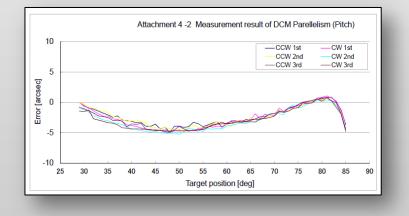

Comments:

- Fixed vessel preferable
- Decoupled mechanics
- Vacuum forces should not effect alignment
- Crystal change should not move vessel

European Synchrotron Radiation Facility

 ESRF happy with Ferrofluidic seals

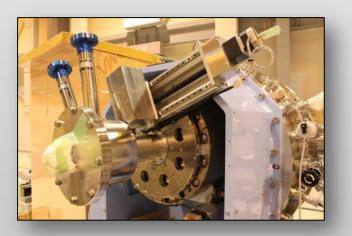

Bragg Bearing & Crystal Parallelism


Supplier specificities:

- In vac bearings & drive based on commercially available UHV compatible goniometer tables
- Classic ball bearing and worm wheel
- Scanning speeds up to 5°/sec possible with direct drive & air bearing
- Direct drive offers over 1°/sec

Comments:

- Crystal parallelism over 1° <0.1µrad requires development
- Possible long term issues of wear on bearings & drive
- Air bearing & direct drive for high scan speeds
- Bearing stiffness / lever arm
- Cantilever loads



Load Distribution

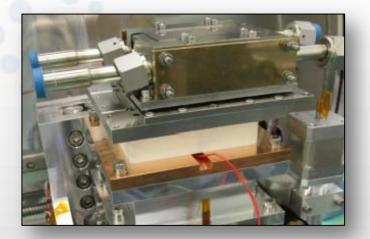
Supplier specificities:

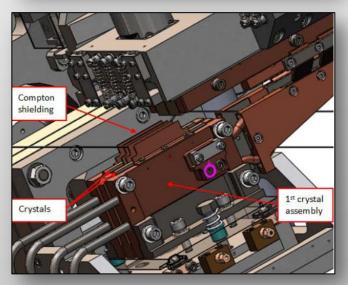
- 2nd crystal assembly is kept light & compact (= stiff) with minimal displacements (= long crystal)
- Cam & long translation system. If range >30°, gap & longitudinal translations
- Custom ex vac counterweight on linear translation for constant centre of mass
- Large differences for max load on Bragg bearing

Load on Bragg axis (kg)	
250	
110	
<100	
50	
80	
Up to 300	

Comments:

- Only gap translation for fixed exit
- 2nd crystal : 150 200mm long
- Deformation at extreme positions
- Large angular range 3 81°
- High energy = long 2nd crystal
- Low energy = long gap translation

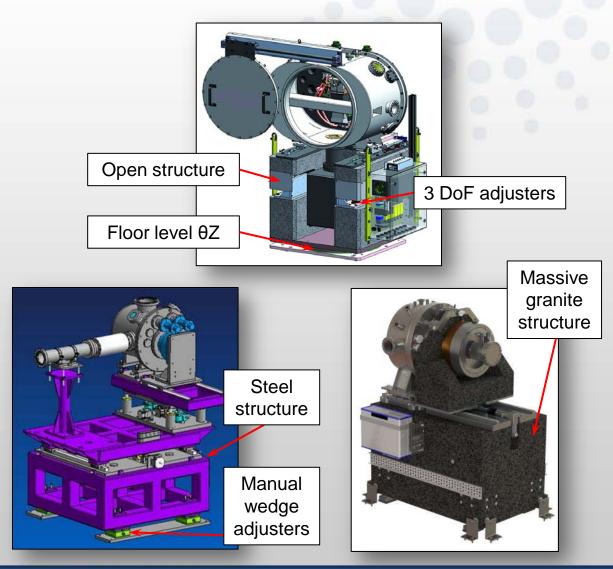

Thermal Load Management


Supplier specificities:

- Thermally insulated crystal mounts, thermalised mechanics & cryo radiation shields.
- Quality of cryo cooler
- Cryo cooler included in package?
- Useof thermalisation & heater elements for or against?
- Most suppluers propose insulator & heater element between 1st crystal mount & mechanics – control?

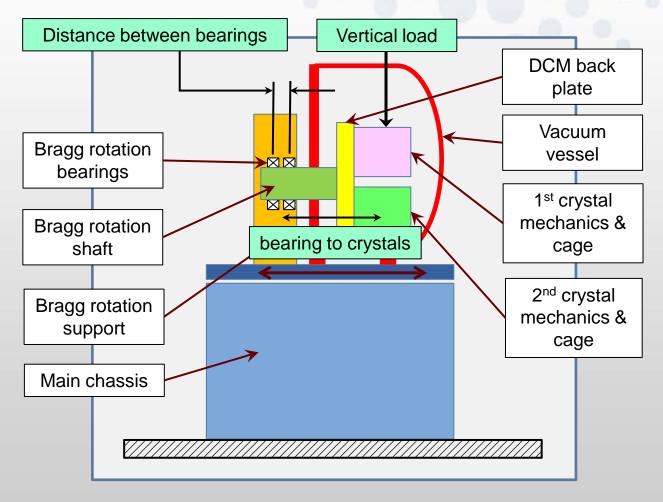
Comments:

- Heater thermal transfer function
- Mechanical stability of thermal insulator
- Smooth walled cryo tubes
- Thermal radiation shielding
- Compton scattering: (up to 20% of total power)
 shielding mandatory
- 2nd crystal cooling critical for minimal ΔT

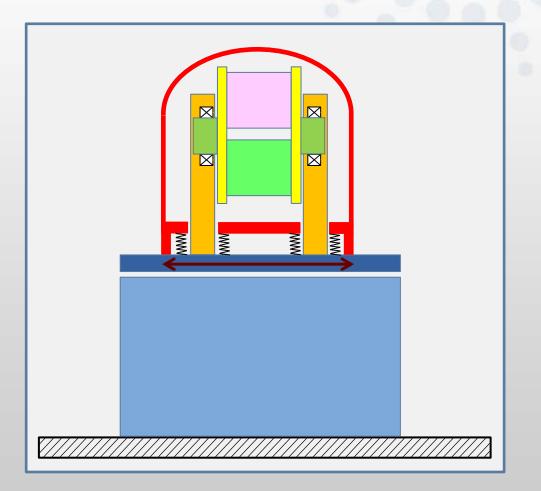


Other

- Only one supplier uses a dedicated encoder shaft to eliminate error due to shaft "wind up". Also only supplier proposing absolute encoder
- Two suppliers clearly demonstrate comprehensive in house mechanical & thermal FEA, metrology & testing
- One supplier indicates impressive vibration performance figures: 85 Hz on 1st crystal
- Vibration analysis generally performed during customer acceptance tests


Identified Critical Points - Chassis Vibration Transmission

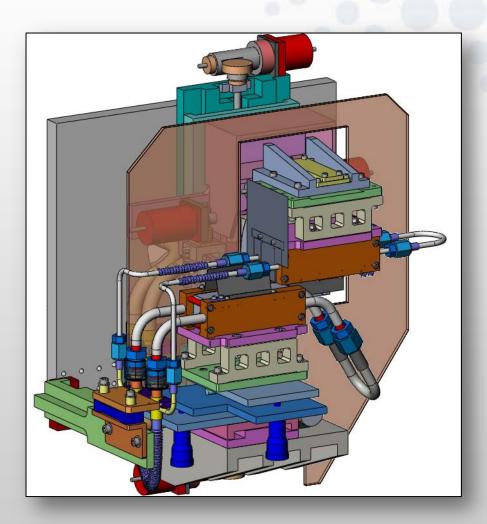
- Welded steel structures mechanical & thermal stability compared to natural or synthetic granite
- Natural granite = stable & cheap
- Synthetic granite = awkward shapes, pump access
- Interface to floor
- Grout stiffness / thickness
- Adjustable feet
- Remote ex vacuum displacements (unlockable)
- Low level movements
- Open structures


European Synchrotron Radiation Facility

Identified Critical Points - Mechanical Stability

- Cantilever vertical load up to 250 kg!
- Deflection during large angular movements?
- Vibrations?
- Vacuum forces on Bragg rotation support bracket
- Vacuum forces on rear of vessel?

Alternative solution?


Advantages:

- More compact design
- No cantilever load
- Much stiffer
- Less sensitive to vibrations
- No influence of vacuum forces
- Thermally symmetrical

Disadvantages:

- In vacuum bearings (& motor?)
- Lubrication & lifetime issues
- In vacuum encoder
- Radiation damage issues
- Crystal access
- Crystal cooling
- No one has done this!

ID20 Pre - Monochromator

Refurbished ID16 Kohzu pre-mono

- LN₂ cooling
- Energy range 4 20 KeV
- Bragg angle 5 30°
- 1st crystal fixed but no longer centered on axis of main rotation
- Beam moves on 1st crystal with energy
- 2nd crystal small (10mm) motorised vertical translation, and fine pitch & roll correction

Courtesy Kieth Martel - ESRF

Conclusion

- Difficult to conclude before direct discussions with each possible supplier
- All shortlisted suppliers are reputed & show excellent qualities, but all have drawbacks / limitations
- ESRF will favour a generic design from a single supplier if at all possible
- No "off the shelf" solution exists future ESRF DCM will require developments in several fields
- Development will require considerable material resources
- Significant on site tests & metrology will be required (ESRF facilities)
- Close collaboration or co-development with supplier is therefore mandatory
- The possibility of partial in house development or collaboration with other facilities should be evaluated

Acknowledgements

ESRF Double Crystal Monochromator Working Group :

- O. Mathon
- R. Tucoulou
- H. Gonzales
- A. Rogalev
- Y. Dabin
- R. Barrett
- L. Zhang
- R. Baker

Thank you for your attention