

Ab Initio: Phasing by Direct methods

Most small-molecule structures are solved by *direct methods*. Approximate phases for the strongest reflections are derived from the measured intensities

This is enough to find most atoms, and then complete the structure

Making some general assumptions, it is possible to exploit the high redundancy of the diffracted intensities: (100 independent reflections / atom)

Equal atom structures with > 200 atoms are a problem

Compound	Spacegroup	N(+solv)	HA	dÅ
Actinomycin X2	P1	273(305)	-	0.9
Actinomycin Z3	P212121	186(307)	2 C I	0.96
/ancomycin	P43212	202(312)	6CI	1.09
Actinomycin D	ΡÎ	270(314)	-	0.94
Ristocetin A	P2,	294(420)	-	1.03
-lirustasin	P43212	402(467)	105	1.2
Cyclodextrin	P21	448(467)	-	0.88
Decaplanin	P21	448(635)	4CI	1.00
Cyclodextrin	P1	483(562)	-	1.00
Bucandin	C2	516(634)	105	1.05
Amilose CA26	P1	572(719)	-	1.1
/iscotoxin B2	P212121	722(812)	125	1.05
Nersacidin	P32	750(826)	245	1.04
WT CVHIPIP	P2,2,2,	1264(1599)	8Fe	1.2
Cytochrome c3	P3,	2024(2208)	8Fe	1.2

Protein	#sites	kDa	SG	d _{min}	СС	P ratio
ApD	3/3 Se	16	C222 ₁	2.2	45	16
RRF	3/4 Se	20	P4 ₃ 2 ₁ 2	4.0	60	1.4
ModE	6/6 Se	57	P21212	3.0	66	7.3
9hem	18/18 Fe	64	P2 ₁	2.9	73	4.0
AT	32/32 Se	160	C2	3.5	49	5.1
Cyanase	40/40 Se	170	P1	2.4	57	1.0
тн	51/60 Se	161	P2 ₁	2.5	52	2.8
AEP	66/66 Se	270	P2 ₁	2.55	61	13
КРНМТ	145/160 Se	567	P2 ₁	2.8	49	35
Anomala Patterso SHELXD direct n	ous scattere on or Direct) solve large nethods and	rs wei Meth r sub aeom	re tradi lods. structur etrv.	tionall es cor	y fou mbinin	nd with ng Patte

· S wave	length	MAD	to 2.	6 Å,	K-Edg	ge 1.7	'4Å				
•P4 ₁ 32	or P4 ₃	32									
Anomalo sigmas, Inf- 8.0 3.65 2	us sigr the sec - 6.0 .90 3	al/nois ond or - 5.0 .40 3	se ratio 1 variar 1 - 4.2 .01 2	os (1.0 nces of - 4.0 .47 2	is ran F+ ar - 3.8 .28 2	idom). id F- (- 3.6 .01 1	The fi if not - 3.4 .74 1	rst line alread - 3.2 .93 1	z is ba y aver - 3.0 .59 1	sed on aged): - 2.8 .24 1.	input -2.6 .26
Anomal	ous co	orrelat	tion co	effici	ents (%) aga	ainst p	oreviou	us dat	asets	
Inf- 8.0	- 6.0	- 5.0	- 4.2	- 4.0	- 3.8	- 3.6	- 3.4	- 3.2	- 3.0	- 2.8	-2.6
95.8	90.1	92.5	88.8	83.9	76.2	78.6	75.1	70.0	55.7	28.4	13.5
84.0	79.6	87.2	84.8	80.6	77.6	77.9	67.3	65.6	51.5	20.5	10.6
84.0	79.6	87.2	84.8	80.6	77.6	77.9	67.3	65.6	51.5	20.5	10.

SAD phasing procedure in SHELXE

- 1. Calculate centroid phases (α = 90 or 270°) with weights that depend on the (normalized) $|\Delta F|$.
- 2. Use these phases, foms and $|F_{\rm T}|$ to calculate a map, apply *low density elimination* (Woolfson, Giacovazzo) and reinvert map to estimate phases for small $|\Delta F|$ and centrics. This is an alternative to B.C.Wang's method of solvent flattening to *resolve two-fold ambiguities*.
- 3. If heavy atoms are present in the native, include their σ_A -weighted direct estimates of ϕ_{\top} (as in the heavyatom method for small molecules, does not use $|\Delta F|$).

These three steps produce independent phase estimates (2 and 3 are orthogonal to 1) so can be combined using $\sigma_{\rm A}-$ weights (Read).

Torture Case: Gordon Leonard's DNA • 8 base-pairs in P6₁: 14 P, data to 2.4 Å • Can we solve it from the atoms? MPE = 70°

 \cdot From the anomalous data? MPE = 40°

 \cdot Can we find the substructure at 2.4 Å from calculated data and phase the structure?

MPE = 33°

•At 2.8Å?

NO substructure

