The Evaluation of Sulfur's Anomalous Signal in Diffraction Data and Beyond

Zhi-Jie Liu

National Lab of Biomacromolecules Institute of Biophysics, Chinese Academy of Sciences

4th Winter School on Soft X-rays in Macromolecular Crystallography Grenoble, France, February 6-8, 2012

Outline

(1) Background

(2) Evaluate the readiness of data collection systems

(3) Evaluate the anomalous data quality

(4) A better way to collect high quality anomalous data

(5) A powerful tool for S-SAD phasing

1999: S-SAD New Structure Obelin

22.2 kD

1.70Å

3.0Å

8S, 1CI

1.74Å (17ID)

Molecular Weight: Diffraction limit: Heavy atoms: X-ray: Phasing Resolution:

Work was performed at UGA

Liu, Z.J., etc, Protein Sci (2000)

Anomalous signal of sulfur at different wavelengths

Sulfur SAD phasing with soft synchrotron X-rays

Wavelength: 2.0Å

Taken at SER-CAT, APS, 2002

Structures determined by Sulfur-SAD phasing using Cr X-rays

Work was performed at UGA

50 residues / sulfur

Data collection system 1

Data collection system 2

 (2) Synchrotron x-ray beamlines is a very complicated system and it is composed of thousands of optical, electronic and mechanical parts. It is a great challenge to keep them at peak performance simultaneously;

(3) A monitoring mechanism is need to access the readiness of data collection systems.

What could go wrong with the beamline?

X-Ray beam: instability of beam intensity, beam position, divergence

etc.

Goniometer system: mechanical accuracy of goniometer and shutter synchronization.

Detector system: Dark current correction, balance of different mosaic chips, sensitivity, dynamic range, DQE, cooling T.

What could go wrong with the user?

X-Ray beam: Choice of wavelength, beam size, attenuation

Goniometer system: Crystal centering.

Detector system: Detector distance, exposure time, oscillation

width, scan range.

Evaluate the readiness of data collection systems A quick and easy way to evaluate t

A quick and easy way to evaluate the readiness of data collection systems

Requirements:

- 1. Evaluate the readiness of the entire data collection system
- 2. Quick and easy to use
- 3. Objective and consistent

Solutions:

- 1.Evaluate the readiness of the entire data collection system Use sulfur's anomalous signal in collected data
- 2.Quick and easy to use
 - Use Zn-free insulin crystal
- 3. Objective and consistency
 - Develop objective parameters from the collected data.

Why Zn-free insulin?

- High symmetry (I2₁3): quick data collection
- High crystal quality: reliable
- Cheap, easy to grow crystals

Parameters used in the readiness test:

- Relative peak height in anomalous difference Fourier map <u>RPH=AVG(peak1 +peak2 + peak3)/AVG(peak7+peak8+peak9)</u>
- 2. Mean phase difference between model phases and S-SAD phases: $\Delta \emptyset$
- Map correlation coefficient between model phased 2Fo-Fc map and S-SAD map: MapCC

Systems used in readiness test:

X-ray System	Detector	X-ray source	Wavelength(Å)
1	CCD1	Synchrotron1	1.74Å
2	CCD1	Home X-ray Cu	1.54Å
3	CCD2	Synchrotron2	1.74Ă
4	CCD3	Synchrotron1	1.74Å
5	CCD4	Home X-ray Cu	1.54Å
6	Image Plate	Home X-ray Cu	1.54Å
7	Image Plate	Home X-ray Cr [•]	2.29Ă
8	CCD2	Synchrotron3	1.70 Å
9	CCD4	Home X-ray Cu	1.54Å

[•]: Chromium anode.

Relative Peak Height in Anomalous Difference Fourier Map:

Phase different in the readiness test:

How can we make it quicker and easier?

- A web based Readiness Server is being built at IBP
- ~10 min insulin crystal data, ~5 min process data, ~2 min
- submit data. Total 17 min obtain Readiness parameters.

000						lns entra	nce						12
	+ Mttp://zjliulab.ibp.ac.cn/ins/phpweb/ins.html C Q- Google												
60 M	HHpr	ed Robetta	Phenix	科学网	CCP4BB	Liu lab	IBP	Apple	Yahoo!	Google Maps	YouTube	Wikipedia	>
		D	ΓS	ys	ste	m Ì	R	ea	di	ness	}		
User	Pass	word		logi	in er	mail passw	ord			<u>Request N</u>	ew Accou	<u>unt</u>	
	中國科学的	生物物理研	完所										

Objectives:

- Identify if the data is suitable for S-SAD
- > In situ evaluation enables signal based data collection

Anomalous signal strength indicators:

- d"/sig(d"): SHELX C
- CC (All/Weak): SHELX D
- R_{ano}/R_{pim} ratio: R_{ano} (anomalous R factor) must be greater than R_{pim}
 (error in observed intensities). Weiss, Acta Cryst D, 2001
- > RAS: Δ_a/Δ_c = (signal + noise) / (noise), Fu, Rose, Wang, Acta Cryst D, 2004

Case study:

MW: 40 kDa

of S: 4 Met, 9 disulfides Resolution @home: 3.0Å Space group: P6₁22

Data collection Beamline: PF 17A, 1A Wavelength: 2.0Å, 2.7Å, Detector: ADSC 315 CCD Oscillation: 0.5°, 0.75° Scan range: 360°, 270° Helium Path: Yes for $\lambda = 2.7$ Å Cooling: Helium gas for λ=2.7Å

The state of the s

PF 1A Beamline

-

2

1

F

J.

Diffraction image @ home

Diffraction image @ PF 17A

Comparison between 2.0Å and 2.7Å wavelength

λ=2.0Å

Initial S-SAD phased map (λ =2.0Å)

Data collection and processing

Crystal	А	А	В	С	D
Data Set	A1	A2	B1	C1	D1
X-ray source	PF17A	PF17A	PF17A	PF1A	PF1A
Distance (mm)	310	160	160	91	91
Number of images	360	360	360	248	281
Oscillation width (°)	0.5	1	1	1	0.75
Wavelength(Å)	0.98	2.00	2.00	2.70	2.70
Space group	P6 ₁ 22				
a, c (Å)	77.86, 186.56	77.91, 186.42	77.68, 186.81	77.56, 187.41	77.47, 185.81
Mosaicity (°)	0.32	0.48	0.22	0.38	0.65
Resolution range(Å)	50.00-2.09	50.00-2.70	50.00-2.70	50.00-2.95	50.00-3.20
	(2.16-2.09)	(2.82-2.70)	(2.82-2.70)	(3.08-2.95)	(3.34-3.20)
Rsym (%)	6.4(25.5)	7.5(37.3)	9.7(38.0)	11.4(42.4)	10.4(36.4)
Mean I/ $\sigma(I)$	79.09(15.79)	80.782(21.0)	73.15(14.9)	60.70(12.76)	54.10(12.47)
Completeness (%)	99.9(100.0)	99.9(99.9)	99.9(99.7)	99.8(99.8)	99.8(99.9)
Redundancy	20.4	39.1	39.3	25.3	20.1

Calculations of different indicators

N_A: Number of anomalous scatters.

N_p: Approximate total number of non-hydrogen atoms.

 Z_{eff}^{F} : the effective atomic number (~6.7 for non-hydrogen protein atoms).

⁽²⁾: $R_{anom} = \frac{100 \times \sum_{hkl} |I(hkl) - I(-h-k-l)|}{\sum_{hkl} \langle I(hkl) \rangle}$ ⁽³⁾: $R_{p,i,m} = 100 \times \sum_{hkl} \left[\frac{1}{N-1}\right]^{1/2} \times \sum_{i} \left|\frac{I_{i}(hkl) - \langle I(hkl) \rangle}{\sum_{hkl} \sum_{i} I_{i}(hkl)}\right|$ ⁽⁴⁾: Calculated at 50.00 - 3.10 Å resolution range. ⁽⁵⁾: Correlation coefficient in ShelxD.

⁽⁶⁾: Average phase difference between model phases and S-SAD experimental phases

Comparison of indicators:

- R_{ano}/R_{pim} ratio followed Weiss prediction of 1.5 (Weiss, Acta Cryst D, 2001), only data A yield solution when S-SAD phasing was attempted manually.
- > R_{ano}/R_{pim} ratio: Inconsistent with $\Delta Ø$ for weak anomalous data.

Comparison of indicators:

CC (all/weak): Clear gap between "solved" and "unsolved" data.

> CC (all/weak): Inconsistent with $\Delta \emptyset$ for and weak anomalous data.

Comparison of indicators:

> d"/sig(d"): Consistent with $\Delta \emptyset$ for both strong and weak anomalous data.

A better way to collect high quality anomalous data

Multi-Data-Set (MDS)data collection strategy

- Traditional data collection strategy:
 - Exposure X seconds per frame scanning a total of Y degrees
- Multi-Data-Set (MDS) data collection strategy:
 - Exposure X/N seconds per frame scanning a total of Y degrees, but repeat the data collection N times

Total X-ray dosage is the same!

Exposure Time: X seconds

Exposure Time: X/N seconds Repeat N times

Summary

Single data set approach:

$$\sigma_{total}^{2} = G[I_{s} + I_{bg} + (m / n)I_{bg}] + m(K / A)^{2} I_{s}^{2}$$

Multiple Data set (MDS) approach:

$$\sigma_{total}^{2} = G[I_{s} + I_{bg} + (m/n)I_{bg}] + \frac{m(K/A)^{2}I_{s}^{2}}{N}$$

This illustrates the theoretical advantage of applying the MDS approach over the traditional approach.

Crystals: Zn free cubic insulin crystals

X-ray source: Rigaku MicroMax-007 Cu, SER-CAT 22-ID

Detector: Saturn 944⁺, Mar 225 CCD

Exposures: X seconds, X/3 seconds

Scan range: 50.0°, 50.0°x 3

Oscillation: 1.0°

Table 1a Data collection and refinement statistics

	Crys	tal 1	Crys	tal 2	Crystal 3					
Data collection										
X-ray source	Rigaku MicroMax-007									
X-ray Optics		VariMax HR								
Detector			Rigaku Satı	urn 944+						
Wavelength (Å)			1.54	19						
Space group			I2 ₁ 3	3						
Cell dimensions:										
a = b = c (Å)	77	.96	77	.59	78	78.42				
Exposure (s) ^{\$}	45	15	45	15	45	15				
Scan range (°)	50	3 X 50	50	3 X 50	50	3 X 50				
Resolution(Å)*	50.00-2.00	50.00-2.00	50.00-1.95	50.00-2.10	50.00-1.95	50.00-2.10				
	(2.07-2.00)	(2.07-2.00)	(2.02-1.95)	(2.18-2.10)	(2.02-1.95)	(2.18-2.10)				
R _{sym} (%)	5.3(22.7)	5.5(44.5)	4.8(33.7)	6.9(38.8)	3.9(23.5)	5.8(48.8)				
I/σI	47.84(6.4)	66.21(6.18)	39.60(4.71)	53.16(10.06)	42.07(5.58)	51.52(5.17)				
Completeness	99.6(99.8)	99.8(100.0)	93.5(61.1)	98.4(90.9)	99.8(100.0)	98.4(90.9)				
(%)										
Redundancy	5.3	16.0	5.5	16.9	5.2	15.5				
Refinement										
Resolution (Å)	50.0)-2.5	50.0-2.5		50.0-2.5					
R/Rfree (%)	25.94/23.69	25.33/22.35	26.13/26.92	26.05/23.72	24.87/26.52	24.58/26.21				

^{\$}: long exposure data was collected before short wavelength to avoid the radiation damage artifact.

*: Numbers in parentheses are statistics for the highest resolution shell.

Table 1b Data collection and refinement statistics

	Crys	stal4	Cry	stal5	Crystal6				
Data collection									
X-ray source		SER-CAT 22-ID							
X-ray Optics		Monochromator							
Detector			Mar 22	25 CCD					
Wavelength (Å)			2	.0					
Space group			12	2,3					
Cell dimensions: $a = b = a(\mathbf{\hat{A}})$	77	0 /	77	76					
$u - v - c(\mathbf{A})$	17.	.04	/8.38			.70			
Exposure (seconds)	9.0	3.0	9.0	3.0	9.0	3.0			
Scan range (°)	90.0	3 X 90.0	90.0	3 X 90.0	90.0	3 X 90.0			
Resolution(Å)*	50.00-2.30	50.00-2.30	50.00-2.30	50.00-2.30	50.00-2.30	50.00-2.30			
	(2.38 - 2.30)	(2.38-2.30)	(2.38-2.30)	(2.38 - 2.30)	(2.38-2.30)	(2.38-2.30)			
R _{svm} (%)	5.2(8.9)	6.5(12.1)	5.3(7.7)	5.8(10.0)	5.1(11.1)	6.7(17.6)			
I/σI	62.3(45.3)	89.4(58.0)	69.8(55.1)	106.5(69.8)	58.2(37.5)	105.7(96.0)			
Completeness (%)	99.24(99.14)	99.38(99.19)	99.14(99.05)	99.36(99.19)	99.46(99.30)	99.41(99.29)			
Redundancy	10.3	30.8	10.2	30.3	10.3	30.4			

Data collected by UGA team

Table 2a Anomalous signal calculation

	Crystal 1		Crystal 2		Crystal 3	
Resolution (Å)	50.0-2.5		50.0-2.5		50.0-2.5	
RPH ^{\$}	1.66	2.46	2.96	3.19	2.92	3.19
Map CC ^{&}	0.37	0.53	0.58	0.61	0.52	0.66
R cc [%]	1.43		1.05		1.27	

^{\$} RPH: Relative peak height is the ratio of average peak height of peaks 1, 2 and 3 divided by the average peak height of peaks 7, 8 and 9 in anomalous difference map calculated at 50.0 – 2.5Å resolution.

[&] Map CC: Map correlation coefficient between sulfur SAD phased map and model phased map at 50.0 – 2.5Å resolution.

[%] Rcc: Ratio of map CC between MDS data and the long exposed data of the same crystal.

 Table 2b
 Anomalous signal calculation

	Crystal 4		Crystal 5		Crystal 6	
Resolution (Å)	50.0-2.5		50.0-2.5		50.0-2.5	
RPH ^{\$}	2.43	2.64	2.42	2.54	2.33	2.55
Map CC ^{&}	0.767	0.804	0.726	0.757	0.787	0.839
R cc [%]	1.05		1.05		1.27	

^{\$} RPH: Relative peak height is the ratio of average peak height of peaks 1, 2 and 3 divided by the average peak height of peaks 7, 8 and 9 in anomalous difference map calculated at 50.0 – 2.5Å resolution.

[&] Map CC: Map correlation coefficient between sulfur SAD phased map and model phased map at 50.0 – 2.5Å resolution.

[%] Rcc: Ratio of map CC between the MPC data and the long exposed data of the same crystal.

"Parameter Space Screening" method based phasing pipeline:

At the synchrotron

Input Parameters

-ray Diffraction Data

upplemental Information

Dictionary

Compute Facility

At the synchrotron or

Operation Setup

Pipeline

Interface

(Dictionary - Driven)

Work Flow

Manager

Platform DB

Interface
 Specifications

Protocols

Results dat

·Rules

World Wide Web

Pipeline architecture

Dictionary driven Web-based user interface

- -user authentication
- -builds web page based on dictionary specifications
- -upload require data
- -dictionary provides for
- -On-line validation
- -easy pipeline updates and modifications

BioperlPipeline based workflow manager

- -manages interaction of the software components -build the pipeline based on dictionary specifications
- -build the pipeline based on dictionary speci--using a predefined configuration file
- -using input/out software wrappers based on Bioperl modules
- -submit jobs to the cluster
- -monitor jobs to ensure efficient use of computing resources

Set of analytical tools for harvesting results

- -parse out key data
- -format into web tables and exported to the user -promising solutions are highlighted in red -allows sorting of results by key data items

A relational database archive

-the dictionary used -the job process history -all pipeline input/pipeline output files

Work was performed at UGA

User side

side

Bioinformatics/Crystallography

Crystallographic

Program

Library
 Modules

Wrappers

Output Parser

[Results scoring & Visualization]

home lab

A powerful tool for S-SAD phasing

Parameter Space Screening method based pipeline:

● 中國科学院生物物理研究所 INSTITUTE OF BIOPHYSICS CHINESE ACADEMY OF SCIENCES

Ru, H., etc, Acta Cryst D, in press

C1

2.70

50.00-2.95

3.60

3.30

D1

2.70

50.00-3.20

N/A

N/A

A powerful tool for S-SAD phasing

Parameter Space Screening method based pipeline:

Parameter space screening results for crystal B

Ru, H., etc, Acta Cryst D, in press

Summary

- 1. Data quality varies drastically with data collection system. It is necessary to check the readiness before data collection.
- 2. Zn-free insulin crystals are excellent probes for monitoring the facility's status.
- R_{ano}/R_{pim} ratio, d"/sig(d") and CC (All/Weak) values are reliable indicators for measuring data with good anomalous signals, while d"/sig(d") is more sensitive for grading a wider range of anomalous data qualities in this specific case.
- 4. MDS strategy is an effective way for improvement of data quality.

Acknowledgments

Heng Ru OuYang SongYing Dong Wu Wei Ding Tian Hua

Bi-Cheng Wang John Rose Lirong Chen Hua Zhang Soichi Wakatsuki Naohiro Matsugaki John Chrzas Albert Fu Other IBP, PF and SER-CAT staff

NIGMS, UGA, GRA, IBP, CAS, MOST, NSFC

