

Debian for Simulation and Numerical Modeling Applications to High Magnetic Field Magnets Design

C. Daversin¹, C. Prudhomme², C. Trophime¹ and S. Veys²

¹ Laboratoire National des Champs Magnétiques Intenses, Grenoble
² Laboratoire Jean Kuntzmann, Grenoble

1/1

United States

- Thallahassee (FL)
- Los Alamos (NM)
- Gainesville (FL)

Europe

- Grenoble / Toulouse
- Nijmegen (Netherlands)
- Dresden (Germany)

Asia

- Tsukuba (Japan)
- Sendai (Japan)
- Hefei (China)
- Wuhan (China)

LNCMI a User Facility run by the CNRS Pulsed field installation TOULOUSE : 14 MJ, 24 kV, 1 GW, 80 Tesla

Continuous field installation GRENOBLE : 24 MW, 35 Tesla

3 / 1

Research

- Condensed matter
- Chemistry and Biochemistry
- Applied Superconductivity
- MagnetoSciences
- Magnet development
- Instrumentation under B

Facilities (10000 hours / year)

- High Pressure
- EPR,NMR
- Lasers
- Low Temp. : down to 20 mK
- High Temp : up to 1600°C

Access

- Call for Magnet Time / 2 x year
- 140 projects / year

Projets

Scattering under Magnetic Field

From Design to Commissioning

6 / 1

High Field Magnet Design

Challenges

- Multiphysics Modeling,
- Non-Linearities and Coupling,
- Complex geometries,
- Optimization

Needs

- 3D Numerical Modeling,
- Fast and reliable methods,
- Control Quantity of Interest (B, < T >, stress, ...),
- Uncertainties quantifications

CT et al. (LNCMI) Jun 2012

Our choice

- Use open source software ("state-of-the-art"),
- Use Linux as a platform for development and computation,
- Need for HPC (from meso centers to national centers).

First attempts

- Use of RedHat/Fedora,
- Few Librairies/Software for numerical modeling,
- (Re)build packages for used/tested software,
- Difficult to get new packages into distribution,
- Difficult System Upgrade.

Why Debian?

Debian

- Large choice of software/librairies for numerical modeling in Debian,
- Easier to get new packages into distribution,
- Easier system upgrade.
- Bring full programming and runtime environments for science in minutes

Debian for Numerical Modeling and Simulation

- Debian Scientific Computing Project (scicomp) (C. Prudhomme et al.),
- Debian Science (S. Ledru et al.),
- Most scicomp packages have now been merged into Debian science

Debian - A Large offer

General Finite Element Analysis (FEA)

- General Finite Element Analysis (FEA),
- Numerical libraries,
- Pre- and post-processing frameworks and tools

See

- http://pkg-scicomp.alioth.debian.org/
- http://wiki.debian.org/DebianScience

Debian - HPC ressources CIMENT meso center (Grenoble)

- 3000 cores (> 5000 in 2013),
- 40 % using Debian,
- Storage grid running Debian.

Grid5000 (Grenoble)

• Heavy Debian user (services and grid nodes)

National(/European) facilities

- Rely unfortunately on poor programming environments : eventually requires compiling down to the compilers, often requires to recompile the numerical libraries stack when one uses modern software
- Suggest Debian@Genci and Debian@Prace

Debian - HPC Ressources

Active development of HPC SysAdmin in Grenoble

- OAR batch scheduler administration tools package
- Taktuk efficient, large scale, parallel remote execution of commands,
- CiGri grid manager tool (to be packaged)
- Xkaapi Lib for parallel programming targeting Hybride archs (CPUs/GPUs)

Contributors (imag.fr)

- CIMENT / CiGri : Bruno.Bzeznik
- Grid5000 : Pierre Neyron
- OAR : Olivier Richard
- Taktuk : Guillaume.Huard

- Parrain debian : Vincent Danjean
- DD Philippe.Le-Brouster
- Xkaapi : Thierry Gautier

Debian - How to contribute?

How and why I became a DM?

- Use/test some new libraries / software
- (Re)build / Update the packages (eg : gmsh, mumps, petsc, ...)
- Capitalize my efforts by submitting the package (eg : getdp)

									_						-
Inuria Bank	-	-	These .	Stating.	and		thete	-	-	100				-	
and a	100			1.2.4.2	1.0.67		Aller	Excess)			-	1			
affectal.	-						AAAAAA					1	-10		1
PTL Paul				1.25-1	11011	F.	11011	Louis News	Party of	- 5	-		25	1211	
CD Ref	6 8 1				112-mai-solime	14	111-hand-milling	Courses Martin	A state		-		3	111	12
PER PER	140.1		111.004		18.8.Me1	Ŀ	2.8.5.0%4.0	Excand) Plant	Rules Logi		-	18	164	253	
FLI BAN	14 -	1.		1424	1984911		1222	En.ort	144		-		16	238	1
FEB Float	18	1.10				ŀ	-un		Traine Mark	8 3	-		613		
nan-free (1 min hann (1 min hann (1			+100	43.23	ALLI DESCRIPTION	1		1	-	-					
hending up	loads	(1)		_		_		_		-					
			URL BOARD		Marris Excesso	a series	Detectorit Linkard	-	-	-					
1.					A DESCRIPTION OF A DESC		the second s	-							

Debian - How to contribute?

My experiences / advices

- Try to package libraries / software,
- Upload your work into Debian Science svn/git,
- Fill Bug reports, Provide patches,
- Share your work,
- Simple, Save time, May help other,
- Benefits

Magnet Development for ESRF

Started with « ESRF Up » FP7

CT et al. (LNCMI) Jun 2012

High Field Split Magnet Design

- Radially cooled helices insert,
- Temperature within each helices,

CT et al. (LNCMI) Jun 2012

• Huge attraction forces.

Thermo-Electrical model and Field calculation with gmsh/getdp

Figure: Initial mesh

Anisotropic mesh Adaption with Feel++ and Gmsh

Anisotropic mesh Adaption with Feel++ and Gmsh

Figure: 3rd iteration

Model order reduction with Feel++ and OpenTurns Approximations

- FEM :
 - Dimension of FEM space : 2 312 (P1)
 - NL iterations pprox 20 (rel. tol 10⁻⁸)
- RB :
 - Dimension of RB space : 40
 - NL iterations pprox 20 (rel. tol 10⁻⁸)
 - EIM terms \approx 40 (rel. tol 10⁻¹⁰)

Meta model

- Y = F(X)
 - X and Y are stochastic variables
 - X follows uniform distribution
 - use polynomial chaos expansion

Sobol indices and quantiles with Openturns

Parameters range	Mean, Standard deviation							
• $\sigma_0 \in []$	Mean = [328.473] Standard deviation = 22.0728297966							
• $k_0 \in []$	Sobol indices							
• $V_D \in [0.05, 0.2](V)$ • $h \in [6.10^4, 9.10^4](W.m^{-2}.K^{-1})$	Sobol 4 = 0.633300283167 (V_D)							
• $T_w \in [273, 323](K)$	$\begin{array}{r} \text{ Sobol 5 = 1.76545493422e-05} \\ \text{ Sobol 6 = 0.362812453403 } (T_w) \end{array}$							

Quantiles

Determine a threshold $q(\gamma)$ such that $P(Y_i < q(\gamma)) > \gamma$

```
99.0 -quantile = [374.123]
80.0 -quantile = [354.55]
```


Conclusions and Perspectives

From Debian view point

- Add specific packages to Debian
- Contribute to packaging efforts (code-aster)
- Enlarge offer for Engineering and Design

From a scientific view point

- Improve our numerical model (error control, uncertainty quantification)
- Apply model reductions to our problem,
- Include more physics
- More complex geometries (from a complete helix to an insert)

