Strong K-edge magnetic circular dichroism in 1s2p RIXS

M. Sikora,¹ A. Juhin,^{2,3} T.-C. Weng,^{4,*} Ph. Sainctavit,³ C. Detlefs,⁴ F. de Groot,² P. Glatzel⁴

¹ AGH University of Science and Technology, 30-059 Kraków, Poland

² Utrecht University, 3584 CA Utrecht, The Netherlands

³ Institut de Minéralogie et de Physique des Milieux Condensés, 75015 Paris, France

⁴ European Synchrotron Radiation Facility, 38043 Grenoble, France

* currently at: SSRL, Stanford, USA

X-ray magnetic circular dichroism (XMCD) is a powerful tool for the element-specific study of the magnetic structure of complex systems [1]. The spin and orbital polarization of 3*d* valence orbitals is probed by dipole-allowed $2p \rightarrow 3d$ transitions, i.e. at the $L_{2,3}$ absorption edges. They are studied using soft X-rays whose short penetration depth limits the number of possible applications. Hard X-rays are used at the *K*-edge but the very weak XMCD signal and the absence of spin-orbit split edges do not allow for a detailed quantitative interpretation.

We have recently observed that XMCD combined with resonant inelastic scattering (RIXS) of hard X-rays at the *K* pre-edge of iron in magnetite yields a dichroic signal that is of the same order of magnitude as *L*-edge XMCD. Crystal field multiplet calculations reveal that the $1s_{2p}$ RIXS-MCD signal arises from intraatomic 2p-3d Coulomb repulsions, 2p and 3d spin-orbit coupling [2].

An interesting aspect of RIXS is the possibility for site-selective measurements by tuning incident and emission energies to the spectral features characteristic for given oxidation state and/or local environment [3]. Thus RIXS-MCD could be used to probe the magnetism element- and site-selectively in mixed valence and multisite compounds with bulk sensitivity and under demanding environments. Possible applications will be discussed.

[1] E. Beaurepaire et al., Magnetism: A Synchrotron Radiation Approach (Springer, 2006).

- [2] M. Sikora, A. Juhin, T.-C. Weng et al., Phys. Rev. Lett. 105, 037202 (2010).
- [3] F. de Groot, and A. Kotani, Core Level Spectroscopy of Solids (CRC Press, 2008).