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Introduction Principal setup   Setup for imaging and spectroscopy

Magnetic domain imaging by soft x-ray holography [1] was 
employed to investigate the exchange coupling phenomenon in 
layered systems composed of ferromagnetic [Co/Pt]

n
 multilayers 

with perpendicular anisotropy exchange-coupled to 
antiferromagnetic IrMn and FeMn films. We have exploited both 
element selectivity and the ability to image in applied magnetic 
fields to follow the magnetization reversal along the hysteresis 
loop with sub-micrometer resolution.  Multiple reference holes 
were used for better image quality [2]. Our setup allows 
holographic imaging as well as absorption measurements by 
recording the transmitted intensity or the total electron yield 
signal. The sensitivity limits of this technique were explored by 
imaging the uncompensated moments in the antiferromagnetic 
layer, which correspond to an equivalent thickness of about one 
monolayer only [3]. Our domain images show that the 
uncompensated antiferromagnetic moments are aligned parallel to 
the magnetization of the ferromagnetic layer.

Element selective  imaging technique (XMCD) 
Versatile sample environment (magnetic field, 
temperature)

Fast image acquisition (~101..102s)
Straightforward and fast image 
reconstruction
Large information depth (~20nm [4])
Suited for buried and layered systems with 
out-of-plane magnetisation
Sub-micrometer resolution

Interface at 
a depth of 13nm !
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SEM image of opaque mask
with multiple reference holes [2]

total exposure time: 
2min 8min

Direct observation of uncompensated AFM moments 
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● Moments responsible for the exchange bias effect 
● ~ 1 effective monolayer contributes to the Fe contrast [3]

Sufficient for imaging 
● Resolution is limited by 290nm (Ø) reference hole
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Imaging the reversal of uncompensated AFM moments 

 Weak Fe signal in transmission from buried AFM
  moments (~1 out of 55 ML)
 Large background in transmission owing to the

  non-pertubated beam passing the reference holes
 TEY detection is not possible due to the limited

  depth sensitivity
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Parallel coupling of the uncompensated AFM moments and the  magnetisation during the reversal of  the FM layer.
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Imaging magnetisation reversal
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 Reversal character:  
  Domain nucleation, domain
   wall propagation, annihilation

 Reversal along the ascending branch 
 occurs at smaller fields and at 
 different places

 Is there  an asymmetric nucleation
 density and reversal process in both
 branches?

Need for a larger field of view and 
higher resolution (<250nm)
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