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Table 1 — Structural constitution of studied sulphate minerals
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Experimental

X-ray absorption experiments were carried
out at the ESRF using beam line ID-21 [3] A
by irradiating a small area (~1um?) of well
crystallized mineral fragments.

The fluorescence yield was collected with an
high-purity ~ Ge-detector
placed perpendicular to the X-ray beam (in the
horizontal plane) and the transmission signal by
a photodiode. The fixed-exit Si (111) mono-
chromator used for energy scan assures an
energy resolution of 0.2eV at the S K-edge.
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Fig. 2- S K-edge XANES spectra collected from
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sharing in the crystal structure.
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Fe,Cu,Zn, Al,Mg. Corresponding crystal structures are reproduced
with indication of space group symmetry (see figures); cation
groupings are assigned to emphasize similarities and differences in
atomic arrangements, likely to account for differences observed in
S K-edge XANES spectra
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Results

S 1s XANES spectra collected from studied sulfate minerals (Table 1) are
reproduced in fig. 2. It is remarkable that only minerals containing
exclusively isolated [SO,] tetrahedra display the characteristic white line of
S5 jons (2482 eV) free from any details (Fig. 2a), followed by not much
diversified post-edge features (Fig. 2b).

Whenever O-sharing occurs, pre-edge details were noticed in Fe, Zn, Al,
Mg sulfates at 2477.8 & 2480 eV (Fig. 2c) — energies close to the values
quoted for the white line respectively in sulphone (S with formal oxidation
state 5+) and sulphonic acid [12].

XANES spectra collected from Cu-sulfates (Fig. 2d) show quite distinct
trends for the S 1s absorption edge: a pre-edge detail at 2479.5 eV occurs
only for the anhydrous mineral, despite both minerals display O-sharing
between sulphate tetrahedra and cation coordination polyhedra.

Further experiments are foreseen to extend this analysis to a larger set of
mineral sulphates, along with theoretical spectra simulation using the FEFF
code [13] in order to interpret spectra features B&C (Fig. 2a).
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