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Introduction
An extensive study of sulphur speciation using X-ray
absorption spectroscopy was developed in the last years
in view of the behaviour of this element as an essential
plant nutrient and as a serious environmental pollutant.
In soil colloids [1], possible intermediate formal
valences were noticed between common stable sulphur
oxidized states, S6+ & S4+ (fig. 1).
A search for the eventual occurrence of analogous
electronic situations for sulphur in well crystallized
sulphate minerals was undertaken by analysing the
near-edge features of S 1s X-ray absorption spectra
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Problematic
Sulphates are quite common minerals that
display a great diversity of structural
activities, containing non-polymerized
tetrahedral sulphate ions, [St O4]=. Metal
ions usually have octahedral environment,
being coordinated by hydroxyls plus water
molecules beyond the oxygen atoms shared
with sulphate ions.
The positional symmetry of S6+ ions is in
general low and the degree of sharing the
oxygen anions with cation octahedra

COPIAPITE,   SG P⎯1 [6]

g y p p
(XANES). Following a preliminary study [2], the details
observed at the shoulder of S6+ white line are further
discussed on the basis of the sharing degree of oxygen
anions between tetrahedral sulphur and octahedral
metal ions.

CRYSTAL STRUCTURES of MODEL MINERALS

Crystal structure & bonding of OO--atomsatoms
Studied sulfate minerals (Table 1) illustrate a variety of structural

situations for [SO4]= tetrahedra and octahedral groups centered by
Fe,Cu,Zn,Al,Mg. Corresponding crystal structures are reproduced
with indication of space group symmetry (see figures); cation
groupings are assigned to emphasize similarities and differences in
atomic arrangements, likely to account for differences observed in
SS K-edge XANES spectra

Adapted from ref. [1]
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oxygen anions with cation octahedra
[Mo X6] (X=O, OH,H2O) varies from 0 to 4.
This crystal chemical feature is crucial for
the interpretation of details close to the
white line in S 1s X-ray absorption spectra.
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Experimental
X-ray absorption experiments were carried
out at the ESRF using beam line ID-21 [3]
by irradiating a small area (~1μm2) of well

ID-21 beamline
at the
ESRF
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Fig. 2 - SS K-edge XANES  spectra collected  from
sulphate minerals listed in Table 1, grouped from 
b to d according to the similitude of [S t O ] oxygen 2crystallized mineral fragments.

The fluorescence yield was collected with an
energy-dispersive high-purity Ge-detector
placed perpendicular to the X-ray beam (in the
horizontal plane) and the transmission signal by
a photodiode. The fixed-exit Si (111) mono-
chromator used for energy scan assures an
energy resolution of 0.2 eV at the SS K-edge.
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b to d according to the similitude of  [S t O4] oxygen 
sharing in the crystal structure. 
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Results
S 1s XANES spectra collected from studied sulfate minerals (Table 1) are
reproduced in fig. 2. It is remarkable that only minerals containing
exclusively isolated [SO4] tetrahedra display the characteristic white line of
S6+ ions (2482 eV) free from any details (Fig. 2a), followed by not much
diversified post-edge features (Fig. 2b).
Whenever O−sharing occurs, pre-edge details were noticed in Fe, Zn, Al,
Mg sulfates at 2477.8 & 2480 eV (Fig. 2c) − energies close to the values
quoted for the white line respectively in sulphone (S with formal oxidation
state 5+) and sulphonic acid [12].
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XANES spectra collected from Cu-sulfates (Fig. 2d) show quite distinct
trends for the S 1s absorption edge: a pre-edge detail at 2479.5 eV occurs
only for the anhydrous mineral, despite both minerals display O-sharing
between sulphate tetrahedra and cation coordination polyhedra.
Further experiments are foreseen to extend this analysis to a larger set of
mineral sulphates, along with theoretical spectra simulation using the FEFF
code [13] in order to interpret spectra features B&C (Fig. 2a).
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