SULLI Tools for Modeling Dynamics Apertures, Touschek Lifetime and Insertion Devices at SOLEIL

Laurent S. Nadolski On behalf of the Accelerator Physics Group Synchrotron SOLEIL

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

1

Layout

- Non-linear dynamics optimization
 - Criteria for optimization
 - Modeling
 - Philosophy adopted at SOLEIL
- Numerical Tools through examples
 - Tracking codes
 - Frequency map analysis
 - Off momentum dynamics
 - Touschek lifetime computation
 - Insertion device modeling

Conclusion

LEIL Linear Optics based on DBA lattice with distributed dispersion

S

SUCHROTRON

Criteria for optimization non-linear dynamics

- Large on momentum dynamic aperture (DA)
 - Ensure 100% injection efficiency (beam stay clear, top-up operation)
 - Large enough (safe margin, robustness)
 - To anticipate small energy mismatch, orbit errors
 - To anticipate non-linearities from multipoles, insertion devices which will reduce furthermore the DA
- Large off-momentum dynamic aperture
 - Ensure large Touschek lifetime (33h @ 500 mA, 4 MV, K = 1%, multibunch)
 →Ensure stability for off-momentum particle (up to ±6%)
 - Margin of stability for ID effects
- Tune footprint in an area almost free of low order resonance
 - Tune shifts with amplitude constrained between resonance lines
 - Tune shifts with energy constrained between resonance lines
 - Minimizing the first order amplitude distortions of sextupolar resonances
 - Small enough sextupole strength
 - Based of analytical formulae where only first order quantities are involved.
- Linear and non-linear dynamics are **<u>strongly entangled</u>** (back & forth)
 - No use of automatic procedure for full optimization

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

Laurent S. Nadolski

SUNCHROTRON What is included in the Model?

- Systematic multipole errors
 - large δ -acceptance, large η -function \rightarrow high order required
 - Dipole: up to 14-poles
 - Quadrupoles: up to 28-poles
 - Sextupoles: up to 54-poles
 - Correctors (steerers): up to 22-poles
 - Secondary coils in sext. \rightarrow strong 10-pole term (large δ)
 - Typical set of current for orbit correction (model/reality)
- From magnetic measurements: anticipation of effects
 - Add true m-poles (both systematic and non systematic)
 - Dipole: fringe field, gradient error, edge tilt errors
 - Quad .: fringe field (to be done), octupole (banana effect for QL)
- Coupling errors (random rotation of quadrupoles)

Insertion devices (destroy often Acc. Physicists' work!)

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

Version 2 (

S LEIL Codes used at SOLEIL

• BETA-SOLEIL (fast, user friendly)

- Lattice design
- Error settings and corrections (alignment, m-poles, ...)
- Sextupole optimization
- Tune shifts, on/-off DA (limitation for large amplitude of 2nd order matrix code)
- 4+2D Touschek lifetime computation

• Tracy II (AT) \rightarrow long term tracking code

- Full symplectic code
 - 4th order Ruth and Forest integrator, Laskar's scheme integrator
 - Inclusion of arbitrary m-poles, validity for large off-momentum oscillation amplitudes
- True 6D tracking code
- Frequency map analysis (NAFF package)
- 4D or 6D energy acceptance computation, Touschek lifetime

• Turn number selections for DA, FMA: @ SOLEIL 1026 turns is enough

- Choice dictated by
 - A good convergence near resonances
 - Beam damping times
 - 4D/6D

- Use of diffusion coefficient to extrapolate dynamics for high number of turns

Mapped IDs à la ESRF

 IDs with complex EM-field (polarization, low gap, quasi-periodic mode)
 Halbach formalism does not work!

 Nonlinear 2D maps of IDs are generated using the 3D RADIA code.

 BETA-SOLEIL and TRACYII have been modified in order to read the IDs maps.

- <u>Thin lens model (2nd order integrator)</u>:
 choice of number of lenses fixed by tune convergence
 full ID, full ID + end poles
- Good agreements with e-beam meas.

See my second talk on Tuesday

Laurent S. Nadolski

The angular kicks experienced by the particle are derived from the function:

$$\phi(x,z,s) = \left(\int_{-\infty}^{s} B_{x} ds'\right)^{2} + \left(\int_{-\infty}^{s} B_{z} ds'\right)^{2}$$

• \$\ophi\$ is integrated over 1 period resulting in a potential function U:

$$U(x,z) = \int_{1 \text{ period}} \phi(x,z,s) \, ds$$

• The angular kick experienced by a particle over the undulator period is:

$$\Delta x' = -\frac{1}{2(p/e)^2} \frac{\partial U}{\partial x}(x, z)$$
$$\Delta z' = -\frac{1}{2(p/e)^2} \frac{\partial U}{\partial z}(x, z)$$

Frequency map analysis

FMA at design stage for the SOLEIL lattice

- A numerical method based on a refined FFT (J. Laskar)
 - Convergence as 1/N⁴ using a Hanning windows (1/N for FFT)
 - · Use of diffusion index

IFII

SYNCHROTRON

5

- Predict orbit diffusion
- Identify resonance
- Show stable to strongly non linear areas in <u>dynamic aperture and tune space</u>
- Gives us a global view of the dynamics (footprints, DA contents & limitations)
- Shows dynamics sensitivity to quadrupoles, sextupoles and insertion devices
- Reveals nicely effect of coupled resonances, specially cross term $v_z(x)$
- Enables us to modify the working point to avoid resonances or regions in frequency space
- Importance of coupling correction to small values (below 1%)
- 4D/6D ...

SULLEIL SYNCHROTRON Nominal working point (18.2, 10.3)

No coupling resonance crossing $v_x - v_z = 8$ ($\Delta v = 0.1$).

Just looking at these curves, dynamics seems very clean ...

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

On-momentum Dynamics --Working point: (18.2,10.3)

Bare lattice (no errors)

S

WP sitting on resonance node $v_x + 6v_7 = 80$ 5_{v_x} = 91 $v_x - 4v_z = -23$ $2v_x + 2v_7 = 57$

Ok if low amplitude

Beware of tune shifts from IDs!

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

Laurent S. Nadolski

Physical Aperture limitations Included at early stage

Need to introduce into the code real vacuum chamber dimensions all around the ring (no sufficient to check only at a single s-position: cf phase space distortions)

•H-plane: Absorbers, septum, etc...

S

Laurent S. Nadolski

•V-plane: Absorbers, small gaps, etc...

Non-linear beam dynamics in SR, 2008, Grenoble

Importance of including Vacuum Chamber LEIL Entanglement with Beam Dynamics

S

Effect of the H-Corrector Decapolar Component (1)

- Reduction of Touschek lifetime from 35 h to 25-30h
- Correction of H&V closed orbit and coupling.
 - ★ The 3D calculations of the dipole field of the correctors located in the sextupoles indicated that the best field generates a decapolar component of: $\frac{\Delta B_4}{B_0} = 0.43 \quad @ x = 35mm$
 - We get the following integrated decapolar strength:

$$D_4 = \Theta \times 0.43 \times (0.035)^{-4}$$

$$\Theta \text{ is the kick given by the correctors}$$

$$B = D_4 x_0^4 + 4 D_4 \eta \delta x_0^3 + 6 D_4 \eta^2 \delta^2 x_0^2 + 4 D_4 \eta^3 \delta^3 x_0 + D_4 \eta^4 \delta^4$$

Feed-down effect: Off-momentum particles see octupole field $4v_x$ resonance

Effect of the H-Corrector Decapolar component (2)

Dependent amplitude off-momentum tunes

Laurent S. Nadolski

S

Non-linear beam dynamics in SR, 2008, Grenoble

Effect of large non systematic octupole in Long Quadrupoles Example of WP 18.19 / 10.29 → retrofit with sextupoles

Laurent S. Nadolski

Off-momentum dynamics exploration

Several approaches:

S

I FII

- Off-momentum frequency maps

- Energy/betatron-amplitude frequency maps

- Very rich and concise
- Static and dynamic information at the same time

- Touschek lifetime - momentum acceptance

- 4D tracking
- 6D tracking

Off momentum dynamics w/o IDs

Laurent S. Nadolski

SYNCHROTRON

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

22

Laurent S. Nadolski

Coupling reduction by a factor 2 with 3 x U20

Usefulness to go to low coupling value

Usefulness of modeling non-linear combined effects of set of IDs

Laurent S. Nadolski

HROTRON

Optimization of a New Point Enhanced philosophy

On momentum

SYNCHROTRON

S

- 3 v_x + v_z = 65 to be avoided (not shown w/o FMA)
- WP to be shifted from resonance node
- Control of tune shift with amplitude using sextupole knobs
 - $v_{x}(J_{x}, J_{z}) = a J_{x} + b J_{z}$
 - $v_z(J_x, J_z) = \mathbf{b} J_x + c J_z$
- Off momentum $v_{x}(\delta)$
 - Large energy acceptance
 - Control of the tune shift with energy using sextupoles
 - The 4 ν_{X} = 73 resonance has to be avoided for insertion devices

Laurent S. Nadolski

High density-Touschek scattering of particles - large longitudinal transfers of energy - loss unless large acceptance: RF acceptance, physical aperture, dynamic aperture for large energy deviations

 $\tau_T \propto \mathcal{E}_{acc}^{>2}$ (SOLEIL: ε_{acc} = 4 to 6%)

Induced amplitude in a non zero dispersion location: $x = \sqrt{A_x \beta_{x_1}} + \eta_1 \delta = (\sqrt{H_0 \beta_{x_1}} + \eta_1) \cdot \delta \quad A_x = \gamma_{x_0} (\eta_0 \delta)^2 + 2\alpha_{x_0} (\eta_0 \delta) (\eta_0 \delta) + \beta_{x_0} (\eta_0 \delta)^2 = H_0 \delta^2$

Touschek Beam Lifetime

Laurent S. Nadolski

SOIF

Non-linear beam dynamics in SR, 2008, Grenoble

27

Version 2.0

<u>Chromatic orbit + ΔE </u>

Ring axis

Chromatic orbit - ΔE

Transverse Energy Acceptance

Some other effects have to be considered:

> non-linear betatron motion, i.e., transverse phase space distortion,

hon-linear synchrotron motion, i.e., effects of higher order chromaticities and higher order momentum compaction factors (already partly implemented in BETA),

synchrotron radiation: to follow the amplitude variation of the particles during the damping process (diffusion, resonance crossing),

coupling from horizontal to vertical plane:

- induces also a vertical betatron amplitude from Touschek scattering:
 - $\Rightarrow \epsilon_{\rm acc}$ limitations from small vertical gaps,
- possible diffusion process in the vicinity of skew resonances

⇒ Vertical amplitude growing,

bigher order multipole effects.

SDAC

for the tracking

Non-linear synchrotron motion

 $+3.8\% \leftrightarrow -6\%$

SYNCHROTRON

Touschek Tracking

* One way to take into account these effects all together is to perform a 6D tracking.

The energy acceptance calculation problem is then reduced to the very simple question:

Is the particle with starting coordinates (0,0,0,0, $\pm\delta$,0) stable or not?

Particles are tracked:

✓ over 1026 turns

 \checkmark with a starting vertical amplitude of 0.3 mm

 \checkmark with a given energy deviation δ : from -6% to 6% by steps of 0.1%.

✓ Understand where (s-location, plane) and why particles are lost?
 → Provide hints for improving/changing the working point

LEIL Example of working point 18.30 & 10.27

TRACY: 4D (red), 6D (blue), and 6D w/ 1% coupling (green) 6 (%) 4 Energy Acceptance s_{acc} 200 100 -6 -100 -200 -300 30 70 10 20 40 50 60 0 s (m) -400 Particles lost in the vertical plane -500 -600 0 10 20 30 40 50 60 70 80 s (m)

Laurent S. Nadolski

S

Non-linear beam dynamics in SR, 2008, Grenoble

Understanding the physics of losses ...

S LEILTune shift with energy: 18.30 & 10.27

Linear coupling induced non-linear effects Ensure that the linear coupling resonance is not crossed off-momentum

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

Nominal working point 18.20 & 10.30 ($\Delta v=0.1$)

TRACY: 4D (red), 6D (blue), and 6D w/ 1% coupling (green) 6 % Energy Acceptance ϵ_{acc} 2 O -2 -4 -6 10 20 30 40 50 60 70 80 0 s (m)

S

SYNCHROTRON

SUNCHROTRON

$$\frac{1}{\tau_{T1/2}(s)} = \frac{1}{2} \left[\frac{1}{\tau_{T1/2}^+(\varepsilon_{acc}^+(s))} + \frac{1}{\tau_{T1/2}^-(\varepsilon_{acc}^-(s))} \right]$$

- Optics with 18.2 and 10.3:
- 6D Tracking with 1% coupling, mini gap (±2.5 mm in short straight section)
- natural bunch length (500 mA in 416 bunches, 4MV)

Example of local energy acceptance

Long Straight section: +3.8% -5.8%

Short Straight section: +4.0% -4.3%

 $au_{T_{1/2}}^-$ = 66h $au_{T_{1/2}}^+$ = 22h

 $\tau_{T_{1/2}}$ = 33h

Combined with a gaz lifetime of 24h, this gives a total beam lifetime of approximately <u>16h</u>.

Conclusion

- Model used for giving magnet multipole tolerances, for validating the design of the IDs. With modern tools: realistic estimations
- Modeling improvement
 - Fringe field quadrupole
 - Full 6D ID tracking + radiation
 - Retrofit from real IDs
 - Robustness for non zero chromaticity (few bunch operation, TFB)
- Sextupole families
 - 2 families for chromaticity correction
 - n families: chromaticity + nonlinearity compensation
 - Individual sextupoles:
 - Increase number of families: 13 at SOLEIL enable us to reduce α_2
 - Flexibility for local compensation (slicing exp., local focusing for BLs)
- See measurements with e-beam and how is the agreement with the model (Tomorrow's talk).

References

• Codes

- BETA (Loulergue -- SOLEIL)
- Tracy II (Nadolski -- SOLEIL, Boege SLS, J. Bengtsson)
- AT (Terebilo http://www.slac.stanford.edu/~terebilo/at/)
- RADIA (O. Chubar, http://www.esrf.fr/Accelerators/Groups/InsertionDevices/Software

• Papers

- P. Elleaume, A new approach to the electron Beam Dynamics in Undulators and Wiggler, EPAC'02
- J. Laskar, Frequency map analysis and quasiperiodic decompositions, Proceedings of Porquerolles
- H. Dumas and J. Laskar, Phys. Rev. Lett. 70, 2975-2979
- J. Laskar and D. Robin, Application of Frequency Map Analysis to the ALS, Particle Accelerators, 1996, Vol 54 pp. 183-192
- D. Robin and J. Laskar, Understanding the Nonlinear Beam Dynamics of the Advanced Light Source, Proceedings of the 1997 Computational Particle Accelerator Conference
- J. Laskar, Frequency map analysis and quasiperiodic decompositions, Proceedings of Porquerolles School, sept. 01
- D. Robin et al., Global Dynamics of the Advanced Light Source Revealed through Experimental Frequency Map Analysis, PRL (85) 3
- C. Steier et al., Measuring and optimizing the momentum aperture in a particle accelerator, Phys. Rev. E (65) 056506
- L. Nadolski and J. Laskar, *Review of single particle dynamics of third generation light sources through frequency map analysis*, Phys. Rev. AB (6) 114801
- J. Laskar, Frequency map Analysis and Particle Accelerator, PAC'03, Portland
- FMA Workshop'04 proceedings, Synchrotron SOLEIL, 2004 http://www.synchrotron-soleil.fr/images/File/soleil/ToutesActualites/Archives-Workshops/2004/frequency-map/index_fma.html
- L. Nadolski et al., Application of a New Class of Symplectic Integrators to Accelerator Tracking , EPAC'02, Paris
- A. Nadji et al., The Effect of Nonlinear Synchrotron Motion on the SOLEIL Energy Acceptance, PAC'01, New York
- M. Belgroune et al., Refined Tracking Procedure for the SOLEIL Energy Acceptance Calculations, PAC'03, Portland
- P. Brunelle et al., Non Linear Beam Dynamics and Lifetime on the SOLEIL Storage Ring, EPAC'04 Edinburgh
- P. Brunelle et al., Magnetic Measurements Results of the Dipoles, Quadrupoles and Sextupoles of the SOLEIL Storage Ring, EPAC'06 Edinburgh