

SLS acceptance and lifetime

Andreas Streun PSI Villigen, Switzerland

ESRF workshop Nonlinear dynamics in storage rings: from modelling to experiment Grenoble, May 26-28, 2008

Contents

- Status and parameters of the SLS
- Vertical acceptance and elastic scattering lifetime
 - residual gas composition
- Horizontal acceptance
 - amplitude dependant tune shifts
- Momentum acceptance and Touschek lifetime
 - problems of large chromaticity
 - dangerous resonances and how to suppress
 - coupling and scraper experiments
 - conclusions
- Summary

- 12xTBA lattice, 288 m circumference, 2.4 GeV
- 5.0...6.8 nm emittance (dep. on ID status)
- 400 ±1 mA top up operation
- User operation since 7 years, 98% availability
- Upgrades: Femto laser slicing & 3 superbends
- 1 micron photon beam stability at front end
- 3 pm rad vertical emittance (0.05% coupling)

Vertical acceptance

Measurement $(T \cdot P)$ vs. scraper to determine acceptance and residual gas composition and to estimate coupling:

Vertical acceptance and elastic scattering lifetime

- Aperture limitation before 2006: W61 chamber (2 m x 5 mm, β_y= 2 m): A_y = 3 mm mrad
- Measurement: $A_y \approx 1.0 \text{ mm mrad}$ chamber realignment $\Rightarrow A_y \approx 1.5...1.8 \text{ mm mrad}$ - ?
- Aperture limitation since 2006: FEMTO wiggler (2.4 m x 8 mm, $\beta_y = 7.7$ m): $A_y = 2$ mm mrad
- Measurement: $A_y \approx 1.5...1.8 \text{ mm mrad}$
- Residual gas: no beam: 0.6 pbar, ~ 20% CO 400 mA: 4.0 pbar, ~ 10% CO
- Lifetime not limited by vertical acceptance
- \Rightarrow Lower gaps (4 mm), rounder beams ($\beta_y \uparrow$)
- \Rightarrow W61 chamber will be removed \Rightarrow dedicated scraper.

Horizontal acceptance

Simulation (ideal lattice): Ax = 30 mm mrad

break up at 5Qx=102 resonance? Ax = 18 mm mrad

Maximum excitation from pinger: Ax = 11 mm mrad. Acceptance limit not reached

Minimum requirement for injection: Ax > 8 mm mrad 100% efficiency possible (usual 90..95%), but little margin

Conclusion: Ax > 11 mm mrad

Amplitude dependant tune shift measurements

-----Theory: dQx/dAx = -1200/m (nominal) / set to +5000;-5000/m $\Diamond \dots \Diamond \dots \Diamond$ measurement and fit

Panel for sextupole optimization

😵 Chroma												
	Target	Value			Weight		inc	ξ	Name	k	<[1/m2]	lock
CrX lin	5.00	4.90		_	0.0	÷		☑	SD	<< <	-4.978	> >> res off 🔽
Cr¥ lin	5.00	5.06		-	0.0	+			SE		-2.002	> >> res off
Qx	H21000	29.92		-	7.0	+		V	SF	<< <	4.652	> >> res off 🔽
3Qx	H30000	5.57		-	7.0	+			SLA	<u></u>	-7.104	> >> res off
Qx	H10110	28.12		-	7.0	+			SLB		2 960	
Qx-2Qy	H10020	1.81		_	7.0	÷			CM7		2.000	
Qx+2Qy	H10200	8.00		-	7.0	+			SMA	조지	-3.760	> >> res off
2Qx	H20001	29.32		-	2.0	+			SMB	$\leq \leq$	3.427	> >> res off
2 Qy	H00201	47.11		-	2.0	+			SSA	<< <	-7.097	> >> res off
CrX sqr	0.00	-151.62		_	4.0	+			SSB	<< <	4.212	> >> res off
CrY sqr	0.00	78.07		_	5.0	+		Km	ax +/- 15.0	delta	a K 0.200	
dQxx	0.00	-1321.52		-	9.0	+			,		,	
dQxy,yx	0.00	662.42		-	9.0	+						
dQyy	0.00	-627.70		-	8.0	+				w.	11. 1	
2Qx	H31000	1504.35		-	3.0	+					//	
4Qx	H40000	2196.30		-	3.0	+					11.2	
2 Qx	H20110	4036.61		-	3.0	+		-			110 martin	
2 Qy	H11200	8725.54		-	4.0	+						
2Qx-2Qy	H20020	32673.46		-	3.0	+			Salar			
2Qx+2Qy	H2O2OO	10592.53		-	3.0	+						
2Qy	H00310	1065.68		-	3.0	+			4	7 841	1/2/12	
4Qy	H00400	3493.41		-	3.0	+				/ // \		
CrX cub	1000.00	222.40		_	3.0	+				, () ,	· \ \	
CrY cub	-1000.00	209.09		-	6.0	+						
Sum (b3L))^2/1e3	0.06		-	7.0	+		(select Mi	nimizer ir	nitial step 0.250	
1 periods Scaling [mm mrad, %]: 2Jx 30 2Jy 10 dp/p 3 [Res] x10^ 4 Start 1.63E+02 Exit												

Momentum acceptance and Touschek Lifetime

- Lifetime strong function of chromaticity:
 [set] chromaticity: +1 → +5 ⇒ Lifetime: 20 hr → 5 hr
- Early saturation of lifetime vs. RF voltage: little gain > 1.1 MV, i.e. for dp/p > 1.8%
- \Rightarrow Lattice dp/p acceptance < RF acceptance (3%)

Lattice acceptance limitation: prime suspect 3Q_x=61

Touschek Lifetime vs. distance to 3Qx=61 resonance:

move Qx 20.38 \rightarrow 20.43 (2001)

Ref.: A.Streun, SLS-TME-TA-2001-0191

Chromaticity Measurement (2008):

High (= operational) and low chromaticity. (x) = 0.40Theory: Cx = +5Cx2 = -152Cy2 = +780.30-2 -1 0 1 2dp/p [%]

Beam spectra

Excitation by pingers

Betatron amplitudes: Ax = 1.1 mm mradAy = 0.1 mm mrad

Peaks in spectra

clear:

```
Fundamental: Qx, Qy [±Qs]
```

Coupling: $Qx \pm Qy$

doubtful:

```
1<sup>st</sup> order sextupole:

3Qx

Qx ± 2Qy
```

```
2^{nd} order sextupole (octupole):

2Qx - 2Qy

⇒ has a contribution from

crosstalk 3Qx \leftrightarrow Qx + 2Qy

Ref.: J.Bengtsson, CERN 88-05
```


Optimization of sextupole Hamiltonian

$$h = \sum_{n}^{N_{\text{sext}}} V_n e^{i\Phi_n}$$

Sextupole_n \leftrightarrow complex vector: Length $V_n = V_n (b_3, L, \beta_x, \beta_y, D)$ Angle $\Phi_n = \Phi_n (\phi_x + \phi_y)$

Renatsson Systematic first order optimization: 9 terms h_{jklmp} (7 complex, 2 real)

 \rightarrow **16** sextupole families

 \implies Symmetry: $Im(h_{jklmp}) = 0 \rightarrow 9$ sextupole families.

Problem: Sextupoles in *families* can't access h_{jklmp} -phases \Rightarrow auxiliary sextupoles to break lattice symmetry (\rightarrow 2008/09):

Tune Diagram for high chrom.+3.8/+4.4 $\leftrightarrow \approx \text{zero chrom. -0.5/-0.5}$ dp/p = -3%...0...+3% ($\Delta +++ \Box +++ \diamond$); order 1,2,3,4; regular_____ skew.....

 \Rightarrow Is the main coupling (Qx+Qy=29) the culprit and 3Qx=61 innocent?

Touschek lifetime and coupling

0.00105007

2.5

2.0

3.0

Simulation:

T vs. coupling for 50 misalignment seeds with and without coupling suppression using 6 skew quads.

Ref. M.Böge & A.Streun, PAC-1999

Experiments and simulations at ALS \rightarrow

Ref. D.Robin et al., PAC-2003

Figure 2: Simulation of the horizontal (top), vertical (middle), and longitudinal (bottom), position versus turn number of a particle which was launched with initial coordinate of x = 12mm, y = 1mm, and $\delta = 2\%$.

Beam size monitor

vertically polarized, near-UV (384 nm) synchrotron light

Å. Andersson et al, NIM A, in press

Momentum acceptance and Touschek lifetime: Conclusions

- Low chromaticity 0...+1 (dp/p)_{acc} ~3% (like RF), $T \approx 14 \text{ hrs} (k[\%])^{\frac{1}{2}}/I_b[mA]$
- High chromaticity +5

 (dp/p)_{acc} → ~1.5% (loc.), T ≈ 6 hrs (k[%])^{1/2}/I_b[mA]
 Problem: crossing of main coupling and 3Qx
- \Rightarrow move working point away from main coupling
- \Rightarrow auxiliar sextupoles for *h*-phase rotation (3Qx et al.)
- \Rightarrow improve multi bunch feedback to reduce chroma.
- Status: 3rd harmonic cavity: $T \rightarrow 3 \cdot T$ $\Rightarrow T = 7...8$ hrs at 400 mA (390 bunches), $k \approx 0.15$ % $\Rightarrow 60..80$ sec top-up interval for $\Delta I = 1$ mA

Summary

- Vertical acceptance is well understood.
 - Margin for even lower gaps and round beams.
- Horizontal acceptance < theory.
 - but sufficient for 100% injection efficiency.
 - further investigation required.
- Energy acceptance and Touschek lifetime:
 - good for low chromaticity, bad for high.
 - wide tune spread for high chromaticity leads to crossing of coupling and nonlinear resonances.
 - another working point and auxiliary sextupoles may help.
- Beam lifetime 8 hrs in user operation is acceptable.