SUBJECT Comparison between Modeling and Reality at SOLEIL: Beam Transverse Dynamics and Apertures

Laurent S. Nadolski On behalf of the Accelerator Physics Group Synchrotron SOLEIL Machine w/o IDs
 Linear optics
 Aperture & lifetime
 FMA

Machine w/ IDs
Linear effects
Inj. Eff. & Lifetime
FMA

*Conclusion

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

First day optics

Energy tuning

IFII

5

•Measurement with quads turned off and turn by turn BPM: $\Delta E/E = -4 10^{-3}$

✓ Agreement with the LT2 dipole calibration

 \checkmark Agreement with the booster beam extraction time

>Decision: scaling in energy of all the storage ring magnets 2.739 GeV

	ν_{x}	ν _z	ξ_x full	ξ_z full
Model	18.20	10.30	0	0
Machine	17.8	10.1	~-1/-2	~-1/-2

Magnet quad. Bench Expected abs. calibration: 2 10⁻³ But e-beam meas: 12 10⁻³

Quadrupole tuning based on tune measurement

- A relative scaling of all quadrupole gradients of +8 10⁻³ recovers the tunes
 - > Decision: scaling applied to all quadrupole magnets
 - >Coherence with nominal lattice and Chasman Green lattice

>this new calibration gives $v_x = 18.23$ and $v_z = 10.31$

>Relative tune difference is proportional to natural chromaticities

>Other solution would have been to change dipole field and to retune storage ring injection

Laurent S. Nadolski

SULEIL Natural chromaticities

Natural chromaticity xix = -51.4 xiz = -19.4

	ξ_x nat	ξ_z^{nat}
Model	-53	-23
Measurement	-51.5	-19.4

Measurement of dipole field performed using NMR probe.

The difference in the vertical plane is mainly due to the wrong energy dependence of dipole fringe fields in the model.

Reduction of beta-beating using LOCO code

BPM noise H: 220 nm RMS V: 60 nm RMS

S

FIL

Restoring symmetry of the H-dispersion function

Difficulties using LOCO •Unrealistic quad values (>>%) •120 BPM/160 quad ratio •Close by quadrupole issues

→Modified version of LOCO w/ constraints on gradient variations (see <u>ICFA newsletter</u>, <u>Dec'07</u>)

→Results compatible with mag. meas.
 (10⁻³ gradient identity, Brunelle et al., EPAC'06) and internal DCCT
 calibration of individual power supply

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

Linear Model agreement

Orbit, chromaticity, tune response matrices are very closed to real machine

*Theoretical values successfully used for

- Beam transport matrix for first turn correction (energy calibration, ...)
- Relative tune shifts
- Relative chromaticity shifts
- Orbit correction (stable even when using all singular values).

Jersion 2 (

SULLEIL Tune shifts with energy

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

Lifetime: Reality vs. modeling

Experimental conditions

312 bunches, I = 250 mA, κ =0.9 %, V_{RF} = 2.4 MV (1 *C*M, 3.7%, σ_{I} =25ps)

Measurement: 17.3h

Theory: 16.4 h

S

- Touschek (77 h)
- Gas scattering 20 h

 \rightarrow Good agreement

→-4.6% and 3.5% momentum acceptance 8 bunch operation mode Touschek dominant régime $V_{RF} = 2 MV (1CM, 2.9\%)$

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

Version 20

Full beam losses @ x = -18.6 mm corresponding to a transverse absorber upstream to U20 (Short SS)

Insertion Device Effects installed and to come

Non-linear beam dynamics in SR, 2008, Grenoble

ID building strategy

Tolerances

$$B_x ds = \int B_z ds = \pm 20 \ G.cm \qquad \iint B_x ds ds' = \iint B_z ds ds' = \pm 1 \ G.m^2$$

- * A 3 step-process using ID builder (O. Chubar)
 - 1. Assembly: Module sorting according to magnetic measurements
 - $\rightarrow\,$ Minimization of first and second integrals
 - 2. Shimming: using a merit function
 - ightarrow Minimization at different gap and phase values with weight factor
 - i. On axis first & second integral (angle & position) in H & V plane
 - ii. Skew and normal gradient for new IDs
 - iii. Phase error < 0.2°
 - 3. Magic fingers (different gap and phase values with weight factor)
 - \rightarrow Reduction of high field integral for large transverse amplitudes

Expected or unexpected effects depending on gap, phase, current values

- Orbit distortion (Feedforward)
- Tune, chromaticity, coupling variations
- * Injection efficiency, lifetime variation (non-linearities, ...)

Undulators effects on beam parameters at maximum field						
SYNCHROTRON	Tune shifts		Chromaticity variation		37	
Undulator	v _x	ν _z	ξx	ξ _z	coupling (%)	
U20 PROXIMA1	+ 0.0015	+ 0.0015	+0.3	0	+0.1	
U20 SWING	- 0.0016	+ 0.0019	-0.9	0	-0.1	
U20 CRISTAL	- 0.0010	+ 0.0019	0	0	0	
HU80 PLEIADES Phase 0 Phase 40	+ 0.0016 - 0.0050	+ 0.0012 + 0.0056	0 0	0 0	0 0	
HU256 CASSIOPEE Hor. Linear Pola. (LH) Vert. Linear Pola. LV	0 + 0.0005	+ 0.0007 0	0 0	0 0	0 0	
HU640 DESIRS PS1 = + 600A (LV) PS1 = - 600A (LV) PS2 = + 440A (LH)	- 0.0042 + 0.0064 - 0.0020	+ 0.0035 - 0.0045 + 0.0013	0 - 0.3 0	0 - 0.3 0	0 + 0.5 0	

Non-linear beam dynamics in SR, 2008, Grenoble

Laurent S. Nadolski

Gap (mm)

Non-linear beam dynamics in SR, 2008, Grenoble

Gap (mm)

Effects of undulators on injection efficiency at maximum field

ID configuration	Inj. Efficiency (%)	 I
Bare machine	96	Bare
U20 SWING	85	HU6
U20 PROXIMA1	74	
U20 CRISTAL	88	
3 × U20	50	HU2
HU80 TEMPO		2
Phase O	90	3 X
Phase +/- 40	94	+ 5 X
HU80 CASSIOPEE		+ FIC
Phase O	95	3 X (
Phase +/- 40	92	<u>ه</u>
HU80 PLEIADES		+ HU
Phase O	39	<u>ه</u>
Phase +/- 40	95	+ HU
Phase +/- 20	87	<u></u>
3 x HU80 Phase 0	44	Hig

ID. configuration	Inj. Efficiency (%)
Bare machine	96
HU640 mode LV	
PS1= + 600A	76
PS1= - 600A	55
HU256	No significant effect
3 x U20 + 3 x HU80	
+ 3 x HU256	40
+ HU640 PS1	
3 x U20	
@ 10mm	18.200 / 10.300
+ HU80 Pléiades	40
@ 15.5mm	
+ HU640 PS1	18.206 / 10.318
@ + 450A	80

High sensitivity to tune shifts

Laurent S. Nadolski

S

FII

Non-linear beam dynamics in SR, 2008, Grenoble

	Bare lattice	1 × U20	3 x U20
Injection Eff. (%)	98	88	50
Beam lifetime* (h)	13.1	12.8 (-2.3%)	8.7 (-33%)

* Measured for 60mA in 8 bunches VRF = 2.8 MV ; coupling=6.5%

Laurent S. Nadolski

Non-linear beam dyna

1 x U20 closed at minimum gap

Effects of 3 in-vacuum IDs ! Good agreement Model/Reality !

Combined Effects of IDs

Laurent S. Nadolski

S

Non-linear beam dynamics in SR, 2008, Grenoble

The supposedly perfectly linear 10 m long HU640

- · Electromagnetic insertion device with no iron poles
- According to RADIA (model): no effect on non-linear dynamics
- Difficulty to ensure high precision magnetic measurement for a 10 m long ID
- Assembly/disassembly of the device
- On the beam
 - Skew terms
 - Strong reduction of injection efficiency
 - Hysteresis (need for cycling), compromise transparent operation
 - Worst configuration: PS1=-600 A (LV mode, fast variable polarization in future)

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

SULLEIL SYNCHROTRON EXAMPLES

Undulator Configuration	Beam lifetime* (h)	Undulator Configuration
Bare machine	13.1	Bare machine
U20 PX1	12.8	HU640 PS1 (A)
U20 PX1 + SWING	11.2	
U20 PX1 + SWING		-200
+ CRISTAL	8.7	-400
		-600
U20 PX1 + SWING		+200
+ CRISTAL	7.6	+400
+ HU80 Pléiades		+600

Undulator	Total	Beam lifetime*
Configuration	Coupling	(h)
	(%)	
Bare machine	0.6	23
HU640 PS1 (A)		
-200	0.72	23.2
-400	0.90	24.1
-600	1.24	24.2
+200	0.56	20.3
+400	0.57	17.8
+600	0.61	15.4

* Measured for 60mA in 8 bunches VRF = 2.8 MV ; coupling=6.5% * Measured for 202mA in 312 bunches VRF = 2.8 MV ; coupling=0.6%

Non-linear beam dynamics in SR, 2008, Grenoble

Laurent S. Nadolski

Non-linear beam dynamics in SR, 2008, Grenoble

22

Version 20 Beam lifetime variation during operation

SULEIL Conclusion & perspectives

- Machine without insertion devices
 - Pretty good agreement with the model (H & V acceptances, DA, lifetime)
 - FMA: first experiments are positive but need further analysis
- Insertion devices: good and bad guys
 - RADIA + tracking simulation codes + magnetic measurement in rather good agreement with e-beam measurements
 - U20: still question about real physical apertures
 - Difficult to anticipate all construction and assembly errors
 - HU640: need to retrofit a model for our simulation
 - Need strong improvement for injection efficiency and lifetime
 - → New working point, coupling correction, feedforward on tunes, FOFB
 - \rightarrow Preparation for top-up operation soon.