

LHC On-Line Modeling

- Goal of the LHC On-line Model
- The Team and the Tasks
- Status of MAD-X
- Scheme of the LHC On-line Model
- Interface to LSA
- Examples of NL measurements to understand the "real" model
- Conclusion

Goal of the LHC On-Line Model?

Main design features:

- MAD-X is the principle engine of the LHC on-line model.
- A complete and trustworthy (non-)linear model of the LHC will be composed with the databases of the <u>measured magnet errors</u> and beambased measurements.
- Testing of knobs with MAD-X *before* send-to-hardware.
- The online model is *not* a real-time tool but should give answers within in minutes.
- All functionalities of MAD-X are utilized → Duplication with other tools may occur but the emphasis is on uncovered features.
- Experimenters and operators should profit from a fully functional on-line tool.
- Speed-up the off-line analysis time such that it can be done in the control room.

Frank Schmidt

ESRF-NLBDWS, May 2008

The Team and Tasks

- Frank Schmidt Overall Responsibility, MAD-X General Support, (Non-)linear LHC Model from Fidel/Wise
- Werner Herr Responsibility for Applications, SDDS MAD-X Version, Closed Orbit Correction
- Ilya Agapov Interface to Control System, Application Development, Beam-Based Model Adjustments, PTC_TWISS module
- Massimo Giovannozzi, Thys Risselada LHC Optics, Fidel/Wise, MAD-X Error Routines

In Collaboration with:

• Fidel & Wise (Laurent Deniau, Luca Bottura, Rob Wolf and team & Per Hagen) - Harmonics

• Rogelio Tomás, Masamitsu Aiba & Akio Morita (KEK), Rama Calaga (BNL), Glenn Vanbavinckhove – Beta-Beating

• Gianluigi Arduini, Jörg Wenninger, V. Kain – SPS Operation, 1000 turn BPM system, Standardization of SDDS

- LSA Team (Mike Lamont, Greg Kruk, Jutta Netzel) General control system support
- Alastair Bland TECHNET Support

Frank Schmidt

ESRF-NLBDWS, May 2008

Status of MAD-X

Is MAD-X ready for the LHC commissioning? →

• Is MAD-X properly maintained? ABP no longer provide several exclusive FTEs for program development and maintenance, instead there is one code custodian and a large group of MAD-X Module Keepers.

• Is MAD-X still further developed? ABP has stopped the full blast development of MAD-X since the code fulfills the minimum LHC requirements. However, work is being done for a full PTC object oriented LHC on-line model. →

• Is MAD-X reliable? MAD-X has made use of the well debugged MAD8. Moreover, the independent programs SixTrack and PTC provide a continuous check such that any inconsistency could be eliminated.

• Is MAD-X fast? There is some speed loss compared to MAD8 due to the mixture of Fortran and C. The object oriented PTC extension is more time consuming by definition.

Frank Schmidt

Interface to LSA

Missing Sextupoles (SPS) (F. Schmidt, R. Tomas et al.)

Specially arranged SPS configuration for extraction sextupoles

++++ - - - -

(3,0) resonance driving terms

Data fully decohered (factor 2 correction applied)

Comparison with nominal model

One extraction sextupole accidentally disconnect

Uncompensated Skew Sextupole Resonance (PSBooster) (P. Urschütz, M. Benedikt)

phase space vertical motion 5 sed Amplitude -5 -6 'n 100 200 300 400 500 600 700 800 900 100 -4 -3 -2 Turn yn [10^-3 m^0.5] 30000 beam losses FFT 25000 (0/1)20000 Normalised Amplitude 0.1 arbitrary u 15000 (0/-2)ntensity [00001 0.01 5000 0.001 100 200 300 400 500 800 900 1000 600 700 -0.5 -0.4 -0.3 -0.2 -0.1 0 01 02 03 04

CERN PS data vertical plane 3Qy = 16 and

(0, -2) spectral line Uncorrected machine

Turns

Frequency [tune units]

Corrected Skew Sextupole Resonance (PSBooster) (P. Urschütz, M. Benedikt)

vertical plane 3Qy = 16 and (0, -2) spectral line

CERN PS data

Resonance compensated with skew sextupoles

Setting based on the reduction of the (0, -2) line amplitude

ESRF-NLBDWS, May 2008

Longitudinal Location of strong Sextupoles (Tevatron) Y. Alexahin, F. Schmidt et al. EPAC06

(3,0) resonance detection from (-2,0) spectral line at Tevatron

- Release of the Online Model Software
- Model of the LHC (still work in progress)
- Experiments and Testing
 - •Applying the Online Model in the SPS start-up with beam.
 - Complementing the theoretical SPS model with beambased corrections → needed for the LHC.
- Being ready for Sector Test and LHC Commissioning!