

# Injection Efficiency – Impact of IDs on the Horizontal Beam Dynamics

P. Kuske, J. Bahrdt, W. Frentrup, A. Gaupp, M. Scheer, G. Wüstefeld, BESSY

Introduction – Top Up, static and dynamic field components

**Planar Undulator U125** 

before re-shimming

afterwards

remaining problems

# APPLE II-type Undulator UE112

compensation of dynamic field components:

passive – with L-shims in the elliptical mode

active – with current carrying wires in the inclined mode

non-linear lens

Summary



**Top Up operation - radiation safety requirement:** 

Injection efficiency > 90 %, assured by interlock

currently impossible with the IDs installed at BESSY – especially if located in high  $\beta_x$  straight sections (like the U125 and the UE112)

Mechanism of the beam interaction with IDs

problems can arise from poor field quality of ID – *static field components:* prop. 1/E - example U125, before re-shimming

oscillatory beam motion - even in the ideal 3D-undulator fields - leads to noticeable modifications of the dynamics – *dynamic field components, prop.* 1/E<sup>2</sup>:

- horizontal plane field roll-off due to finite width of poles, non-linearity important for large beam excursions
- vertical focusing like in ordinary dipoles, non-linearity usually not important

**APPLE-type undulators show a mixture of both effects** 

general observation: injection efficiency scales with the available dynamic aperture



# Static Field Errors: U125ID5R



U125ID2R planar undulator with 1 T peak field:

• Expected modification of vertical beam dynamics – aperture reduction linear effect

•Unexpected horizontal dynamics – 30% reduction of dynamic aperture

# Static Field Errors: U125ID2R, gap = 15.7 mm

horizontal beam dynamics:

•dynamic field integrals due to field roll off (estimated by J. Bahrdt)

#### •static field integrals

SSY

stretched wire measurement (BESSY ID-group)





#### •gap open

•gap closed - dynamic effects only

•gap closed - dynamic and static effects



# Magic Fingers for the U125ID2R





# **Improvement of the Fields**



# before installation of magic fingers





# Before and After Re-Shimming of the U125ID5R





# Before and After Re-Shimming of the U125ID5R





# Horizontal Dynamic Aperture vs. Tune







 $3Q_x + 2Q_y - resonance critical at the nom. working point$ 





























![](_page_17_Picture_0.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Figure_2.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Picture_0.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Figure_2.jpeg)

 $3Q_x + 2Q_y - resonance critical at the nom. working point$ 

![](_page_31_Picture_0.jpeg)

# Horizontal Dynamic Aperture vs. Tune

![](_page_31_Figure_2.jpeg)

![](_page_32_Picture_0.jpeg)

# After Re-Shimming of the U125ID5R

![](_page_32_Figure_2.jpeg)

![](_page_33_Picture_0.jpeg)

# Shimming of the UE112ID7R

**APPLE II-type undulator:** 

λ=11.2 cm, B<sub>max</sub>>1T E=1.72 GeV, β<sub>x</sub>=14m strong non-linear impact of ID high sensitivity of beam

partly compensated for by L-shims – iterations required – found good shimming strategy

![](_page_33_Figure_6.jpeg)

![](_page_34_Picture_0.jpeg)

# Shimming of the UE112ID7R

![](_page_34_Figure_2.jpeg)

#### increasing $\lambda$ is better than reducing $B_0$

![](_page_35_Picture_0.jpeg)

# **UE112ID7R**

#### active compensation of dynamic field components in the linear/inclined mode

![](_page_35_Picture_3.jpeg)

32 flat wires along the ID-chamber with 16 individual PS

![](_page_36_Picture_0.jpeg)

# **UE112ID7R**

![](_page_36_Figure_2.jpeg)

#### successful active compensation

![](_page_36_Figure_4.jpeg)

![](_page_37_Picture_0.jpeg)

# **Non-Linear Lens**

![](_page_37_Figure_2.jpeg)

![](_page_38_Picture_0.jpeg)

# **Non-Linear Lens**

![](_page_38_Figure_2.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

# IDs can reduce the horizontal aperture injection efficiency is much smaller than 90 %

# U125 – the planar undulator:

- perfect compensation of static field components has not removed these problems
- the  $3Q_x + 2Q_y = 67$ -resonance should not be driven by the dynamic field components – in lowest order driven by decapoles - related to the horizontal correctors on the sextupole magnets

# **UE112 – APPLE II-type undulator:**

- in the elliptical mode the passive shimming works and has to be improved compensation of dynamic field components by the active system
- in the linear mode active compensation very successful will be implemented as feedforward system
- Non-linear lenses created with the 32 wires of the active compensation system:
- will be used to assess impact of non-linear fields on beam dynamics
- compare observations with theory