Non-linear behaviour of the ESRF lattice: a few puzzling points A. Ropert and L. Farvacque

Outline

The ESRF lattices **Model and experimental tuning** Real physical aperture Oynamic aperture ✓ Measuring technique **On-momentum results Off-momentum aperture** Conclusions

- **1992:** Initial 7 nm expanded Chasman-Green lattice
- **1995: Moved to a distributed dispersion lattice**
- **1996:** Reduction of β_{2} from 13 m to 2.5 mm in undulator straight sections low β_{τ}
- **2000:** Horizontal focusing optics **HFO**
- 2006: Switch from triplets to doublets in straight sections noQD1QD8
 - β**-=3 or 3.5 m**

2007: Detuning of one or several straight sections

10 (8) quadrupole families powered in series
6 (7) sextupole families (2 ---> 3 chromaticity, 4 harmonic)
powered in series

Future upgrade of straight section length from 6 to 7 m

Will be implemented on a limited number of straight sections to minimise cost and downtime

Symmetry breaking of the lattice ✓ Dynamic aperture reduction ✓ Injection efficiency and lifetime reduction

A.Kopert, ropertwesrj.ji

Detuning of straight sections (2)

The impact of the symmetry breaking can be approached by detuning one or several straight sections and changing locally the β -functions

Quadrupoles and sextupoles can be individually powered in ID4, ID6, ID11 and ID20

Model and experimental tuning (1)

 Analysis of focusing errors from orbit response matrix
-Quadrupolar errors
-Quadrupolar correctors
to minimise β-beat

Correction of the difference and sum coupling resonances
Coupling errors (rotation of quadrupoles + correction) deduced from response matrix measurements

ert@esrf.fr

Model and experimental tuning (2)

Scan of sextupolar correctors to improve the lifetime

Quit	HELP	3	NuX =	109			Hard Copy	Panel
<u>ľ</u> Name			Set		Read	ŝ	Status	
SX-C SX-C SX-C SX-C SX-C SX-C SX-C SX-C	24/c8 24/c24 24/c3 24/c3 24/c3 24/c23 24/c29 24/c29 20/c8 20/c8 20/c24 20/c16 20/c32		-0.0164 0.0263 0.0359 -0.0260 -0.0383 -0.0227 0.0385 0.0239 -0.0282 0.0175 0.0175 0.0011		0.0168 0.0269 0.0372 0.0244 0.0388 0.0206 0.0381 0.0263 0.0284 0.0284 0.0188 0.0027 0.0088	A C A C	On On On On On On On On On On	
	,	Amplitude			Pha	ase		
С) SR II	AMPL-7/P109		 s	R/PHAS	E-7/P1	09	
Se	t Value	0.1000	A	Set Value	* !	90.0	deg	
Read	d Value	0.1010	A	Read Value	-8	89.9	deg	
On	Reset							Off

Model and experimental tuning (3)

- Field errors in magnets (individual results from magnetic measurements)
 - dipoles, quadrupoles, closed orbit correctors

Insertion devices not included (open during experiments)

Physical aperture				
Horizontal:	injection septum located at -19 mm of beam axis			
Vertical:	low gap ID chambers beam stay-clear: ± 4 mm length: 5 m			
	in-vacuum undulators			

Model versus ideal lattice

Errors of the real machine destroy the 16-fold periodicity

Even a residual 2 % modulation induces a drastic reduction of the dynamic aperture

Non-linear HV coupling responsible for the additional reduction

Detuning of a straight section

Strong reduction of the aperture of the ideal machine

Can be partly restored with retuning the 2 sextupoles of the straight section

ESRF Horizontal physical aperture

Move the septum by steps

 Increase the amplitude of the closed injection bump until the lifetime of the stored beam is significantly affected
Close the internal jaw of the scraper until the lifetime starts to decrease

Record the lifetime when reducing the acceptance with a vertical scraper jaw

A.Ropert, ropert(

Dynamic aperture measurements (1)

Method #1

 Lifetime recorded versus amplitude of an horizontal oscillation driven by permanently running the injection kicker
Kick calibrated by a scraper jaw

Scraper offset calibration

Method # 2 •Measurement of the relative change in beam current $\frac{I_n - I_{n-1}}{I_{n-1}}$ after a single kicker shot

 Kick calibrated by a scraper jaw
Scraper offset calibration

Method #2 is faster and has been adopted

Dynamic aperture measurements (2)

Kick calibration

Scraper offset calibration

•Analysis of the elastic gas scattering lifetime evolution when closing the scraper •Inverse lifetime fitted to a linear law $\frac{1}{\tau_{meas}} = b + \frac{a}{(scraper_position-offset)^2}$

Dynamic aperture measurements (3)

Same procedure to be used to ensure fair comparison: beam current, loss rate criteria, resonance correction,...

Aperture results (1)

Aperture results (2)

Aperture results (3)

Could the horizontal-vertical coupling be responsible for the limitation, as suspected in simulations ?

Aperture measurements with closing a vertical scraper jaw and monitoring losses

Off-momentum aperture (1)

RF frequency changed in steps Aperture measured by the loss rate method

Puzzling dip around -1 % already observed in 2000

Cannot be reproduced in tracking simulations except with very exotic conditions

Off-momentum aperture (2)

The dip exists for all lattices tuned on 0.44 / 0.39

Off-momentum aperture (3)

2 candidates to explain the phenomena ✓ The υ_x + 2 υ_z resonance ✓ The node 0.33/0.33 of 3rd order resonances

Off-momentum aperture (4)

No clear conclusion from the experiments to discriminate between the 2 assumptions

Very recent possibility of individually powering the vertical chromaticity sextupoles

For most of the experienced lattices, the on-momentum aperture is smaller than predicted

The dip in the measured off-momentum aperture depends on the crossing of third-order resonances but cannot be modelled by tracking

• Missing ingredients in the tracking ?

Directions to improve the understanding ?

One promising tuning to further characterise