

Non-linear modeling of storage and damping rings using symplectic integrators

Yannis PAPAPHILIPPOU

May 26th-28th, 2008

Outline

■ Contributors:

- Ch. Skokos (MPI, Dresden), J. Laskar (IMCEE), E. Levichev, P. Piminov (BINP), F. Zimmermann (CERN), M. Korostelev (Cockcroft Inst.)

■ Acknowledgements

- H. Braun (CERN), L. Nadolski (Soleil), P. Robutel (IMCEE)

Outline

- Symplectic integration
 - The SABA2 integrator
 - Application to the ESRF storage ring ideal lattice
- Compact Linear Collider (CLIC) damping rings
 - Design challenges
 - Sextupole scheme
 - Tune scans
 - Wiggler effect
 - Effect of radiation damping

Symplectic integration

Laskar and Robutel Cel. Mech Dyn Astr. 80, 39, 2001

- Symplectic integrators with positive steps for Hamiltonian systems $H = A + \epsilon B$ with both A and B integrable
- Consider Hamiltonian system $H(\vec{p}, \vec{q})$, with N degrees of freedom
- A trajectory of the system in phase space is described by $\vec{x}(t) = (x_1(t), \dots, x_{2N}(t))$, $x_i = p_i$, $x_{i+N} = q_i$, $i = 1, \dots, N$

- Hamilton's equations of motion take the form

$$\frac{d\vec{x}}{dt} = \{H, \vec{x}\} = L_H \vec{x},$$

with the usual Poisson brackets $\{f, g\} = \sum_{i=1}^N \left(\frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} \right)$.

- The solution is formally written as

$$\vec{x}(t) = \sum_{n \geq 0} \frac{t^n}{n!} L_H^n \vec{x}(0) = e^{tL_H} \vec{x}(0).$$

SABA₂ integrator

- A symplectic integrator of order n from t to $t + \tau$ consists of approximating the operator $e^{\tau L_H} = e^{\tau(L_A + L_{\epsilon B})}$ by products of $e^{c_i \tau L_A}$ and $e^{d_i \tau L_{\epsilon B}}$, $i = 1, \dots, n$ which integrate exactly A and B over the time-spans $c_i \tau$ and $d_i \tau$
- The constants c_i and d_i are chosen for reducing the error
- The SABA₂ integrator is written as

$$\text{SABA}_2 = e^{c_1 \tau L_A} e^{d_1 \tau L_{\epsilon B}} e^{c_2 \tau L_A} e^{d_1 \tau L_{\epsilon B}} e^{c_1 \tau L_A},$$

with $c_1 = \frac{1}{2} \left(1 - \frac{1}{\sqrt{3}} \right)$, $c_2 = \frac{1}{\sqrt{3}}$, $d_1 = \frac{1}{2}$.

- When $\{\{A, B\}, B\}$ is integrable, e.g. when A is quadratic in momenta and B depends only in positions, the accuracy of the integrator is improved by two small negative steps

$$\text{SABA}_2 \text{C} = e^{-\tau^3 \epsilon^2 \frac{c}{2} L_{\{\{A, B\}, B\}}} (\text{SABA}_2) e^{-\tau^3 \epsilon^2 \frac{c}{2} L_{\{\{A, B\}, B\}}}$$

with $c = (2 - \sqrt{3})/24$

Performance of SABA₂

- The accuracy of the SABA₂C was proved an order of magnitude more precise than the Forest-Ruth 4th order integrator

- Note finally that the usual “drift-kick” scheme corresponds to the 2nd order integrator of this class

$$\text{SABA}_1 = e^{\frac{\tau}{2} L_A} e^{\tau L_{\epsilon B}} e^{\frac{\tau}{2} L_A},$$

ESRF workshop 2008

SABA₂C for accelerators

- The accelerator Hamiltonian in the small angle, “hard-edge” approximation is written as $H(x, y, l, p_x, p_y, \delta; s) = H_0 + V$,

with the unperturbed part $H_0 = (1 + h x) \frac{p_x^2 + p_y^2}{2(1 + \delta)}$,

and the perturbation $V(x, y) = \sum_{n \geq 1} \sum_{j=0}^n a_{n,j} x^j y^{n-j}$

- The unperturbed part of the Hamiltonian can be integrated

$$e^{sL_A} : \begin{cases} x^f &= \frac{1}{h} \left\{ (1 + h x^i) \left(\cos \phi + \frac{p_x^i}{p_y^i} \sin \phi \right)^2 - 1 \right\} \\ y^f &= y^i + \frac{1 + h x^i}{h} \left\{ \frac{p_x^{i^2} + p_y^{i^2}}{p_y^{i^2}} \phi + \frac{p_y^{i^2} - p_x^{i^2}}{2 p_y^{i^2}} \sin(2\phi) + 2 \frac{p_x^i}{p_y^i} \sin^2 \phi \right\} \\ p_x^f &= p_y^i \frac{p_x^i - p_y^i \tan \phi}{p_y^i + p_x^i \tan \phi} \\ p_y^f &= p_y^i \end{cases} \quad \text{with } \phi = \frac{p_y^i h s}{2(1 + \delta)}$$

- The perturbation part of the Hamiltonian can be integrated

$$e^{sL_B} : \begin{cases} x^f = x^i , \quad p_x^f = p_x^i - \frac{\partial V}{\partial x} \Big|_i s \quad \text{with} \quad \frac{\partial V}{\partial x} \Big|_i = \sum_{n \geq 1} \sum_{j=1}^n j a_{n,j} (x^i)^{j-1} (y^i)^{n-j} \\ y^f = y^i , \quad p_y^f = p_y^i - \frac{\partial V}{\partial y} \Big|_i s \quad \frac{\partial V}{\partial y} \Big|_i = \sum_{n \geq 1} \sum_{j=0}^n (n-j) a_{n,j} (x^i)^j (y^i)^{n-j-1} \end{cases}$$

- The corrector is expressed as

$$C = \{\{A, B\}, B\} = \frac{1 + hx}{1 + \delta} \left[\left(\frac{\partial V}{\partial x} \right)^2 + \left(\frac{\partial V}{\partial y} \right)^2 \right],$$

and the operator for the corrector is written as

$$e^{sL_C} : \begin{cases} x^f = x^i \\ y^f = y^i \\ p_x^f = p_x^i - \frac{1}{1 + \delta} \left\{ h \left[\frac{\partial V}{\partial x} \Big|_i^2 + \frac{\partial V}{\partial y} \Big|_i^2 \right] + 2(1 + hx^i) \left[\frac{\partial V}{\partial x} \Big|_i \frac{\partial^2 V}{\partial x^2} \Big|_i + \frac{\partial V}{\partial y} \Big|_i \frac{\partial^2 V}{\partial x \partial y} \Big|_i \right] \right\} s \\ p_y^f = p_y^i - \frac{2(1 + hx^i)}{1 + \delta} \left\{ \frac{\partial V}{\partial x} \Big|_i \frac{\partial^2 V}{\partial x \partial y} \Big|_i + \frac{\partial V}{\partial y} \Big|_i \frac{\partial^2 V}{\partial y^2} \Big|_i \right\} s \end{cases} .$$

Application to the ESRF

- Consider the old ESRF “ideal” lattice, i.e. perfectly symmetric (periodicity of 16) with the only non-linearity coming from the sextupoles
- Integrate the equations of motions with three different methods
 - “Drift-Kick” method by splitting the 0.4m sextupoles in a drift+kick+drift
 - Splitting the sextupoles in $10 \times (\text{drift} + \text{kick}) + \text{drift}$
 - Using the SABA₂C symplectic integrator
- Produce frequency maps by using Laskar’s NAFF algorithm and compare

Frequency map I

- Comparison between frequency maps produced by “drift-kick” 1 kick versus 10 kicks

Frequency map II

- Frequency map using the SABA₂C symplectic integrator reproduces the “10-kick” case

Diffusion maps

■ Colour coding following the logarithm of the diffusion vector amplitude

$$D|_{t=\tau} = \nu|_{t \in (0, \tau/2]} - \nu|_{t \in (\tau/2, \tau]}$$

■ Diffusion map using the SABA₂C symplectic integrator shows lower horizontal and slightly higher vertical DA than 1-kick integrator

The CLIC Project

- **Compact Linear Collider** : multi-TeV e-p collider for high energy physics beyond the LHC
- Center-of-mass energy from 0.5 to **3 TeV**
- RF gradient and frequencies are **very high**
 - **100 MV/m** in room temperature accelerating structures at **12 GHz**
- **Two-beam-acceleration concept**
 - High current “**drive**” beam, decelerated in power extraction structures (**PETS**), generates RF power for main beam.
- Challenges:
 - Efficient generation of drive beam
 - PETS generating the required power
 - 12 GHz RF structures for the high gradient
 - Generation/preservation of small emittance beam
 - Focusing to nanometer beam size
 - Precise alignment of the different components

CLIC 3 TeV

MAIN BEAM

DRIVE BEAM

3 TeV
Base line
configuration

Damping ring design goals

- Ultra-low emittance and high beam polarisation impossible to be produced by conventional particle source:
 - Ring to damp the beam size to desired values through synchrotron radiation
- Intra-beam scattering due to high bunch current blows-up the beam
 - Equilibrium “IBS dominated” emittance should be reached fast to match collider high repetition rate
- Other collective effects (e.g. e^- -cloud) may increase beam losses
- Starting parameter dictated by design criteria of the collider (e.g. luminosity), injected beam characteristics or compatibility with the downstream system parameters (e.g. bunch compressors)

PARAMETER	CLIC
bunch population (10^9)	4.1
bunch spacing [ns]	0.5
number of bunches/train	312
number of trains	1
Repetition rate [Hz]	50
Extracted hor. normalized emittance [nm]	<680
Extracted ver. normalized emittance [nm]	< 20
Extracted long. normalized emittance [eV m]	<5000
Injected hor. normalized emittance [μ m]	63
Injected ver. normalized emittance [μ m]	1.5
Injected long. normalized emittance [keV m]	1240

Horizontal emittance vs. energy

Vertical emittance vs. energy

TME arc cell

- TME cell chosen for compactness and efficient emittance minimisation over Multiple Bend Structures (or achromats) used in light sources
- Large phase advance necessary to achieve optimum equilibrium emittance
- Very low dispersion
- Strong sextupoles needed to correct chromaticity
- Impact in dynamic aperture

Energy	2.42 GeV
Field of the bending magnet, B_a	0.932 T
Length of the bending magnet	0.545 m
Bending angle	$2\pi/100$
Bending radius	8.67 m
Length of the cell, L_{TME}	1.73 m
Horizontal phase advance, μ_x	210°
Vertical phase advance, μ_y	90°
Emittance detuning factor, ϵ_r	1.8
Horizontal chromaticity, $\partial\nu_x/\partial\delta$	-0.84
Vertical chromaticity, $\partial\nu_y/\partial\delta$	-1.18
Average horizontal beta function, $\langle\beta_x\rangle$	0.847 m
Average vertical beta function, $\langle\beta_y\rangle$	2.22 m
Average horizontal dispersion, $\langle D_x \rangle$	0.0085 m
Relative horizontal beta function, $\beta_r = \beta^*/\beta_m^*$	$0.113/0.07 = 1.6$
Relative horizontal dispersion, $D_r = D^*/D_m^*$	$0.00333/0.00143 = 2.33$

Wiggler's effect with IBS

- For higher wiggler field and smaller period the transverse emittance computed with IBS gets smaller
- The longitudinal emittance has a different optimum but it can be controlled with the RF voltage

- The choice of the wiggler parameters is finally dictated by their technological feasibility.
 - Normal conducting wiggler of 1.7T can be extrapolated by existing designs
 - Super-conducting options have to be designed, built and tested

Sextupole scheme

- Two sextupole schemes
 - 2 and 9 families of sextupoles
 - For 2nd scheme sextupoles are separated by a $-I$ transformer (2nd order achromat)
- Dynamic aperture is $9\sigma_x$ in the horizontal and $14\sigma_y$ in the vertical plane (comfortable for injection)

CLIC DR betatron tunes scan

Horizontal plane

Levichev, Piminov (2005)

Vertical plane

- Optimising the CLIC DR tune by scanning the tune space for maximum horizontal and vertical dynamic aperture
- DA limited by $(1, \pm 2)$ and integer resonance line

Effect of broken periodicity

Levichev, Piminov (2005)

- With horizontal or vertical beta beating of 5%, appearance of large amount of non-systematic resonances, shrinking the DA and the optimal tune areas

DA for Damping wigglers

- Particles through 3D wiggler field tracked with symplectic integrator (Verlet scheme)
- Linear optics distortion corrected with quadrupole magnets in the dispersion suppressor

- Longitudinal field variation contributes to an octupole-like tune-spread
- Effect of wiggler in DA quite small

Effect of COD and coupling

- Several alignment errors considered introducing closed orbit distortion and dispersion variation
- Correction with dispersion free steering (orbit and dispersion correction)
- Skew quadrupole correctors for correcting dispersion in the arc and emittance minimisation
- Even after correction, reduction of the DA, especially in the vertical plane

Imperfections	Symbol	1 r.m.s.
Quadrupole misalignment	$\langle \Delta Y_{\text{quad}} \rangle, \langle \Delta X_{\text{quad}} \rangle$	90 μm .
Sextupole misalignment	$\langle \Delta Y_{\text{sext}} \rangle, \langle \Delta X_{\text{sext}} \rangle$	40 μm
Quadrupole rotation	$\langle \Delta \Theta_{\text{quad}} \rangle$	100 μrad
Dipole rotation	$\langle \Delta \Theta_{\text{dipole arc}} \rangle$	100 μrad .
BPMs resolution	$\langle R_{\text{BPM}} \rangle$	2 μm .

Effect of radiation damping

$Q_x = 70.1277$ $Q_z = 36.4162$

Levichev (2007)

- Including radiation damping and excitation shows that 0.7% of the particles are lost during the damping
- Certain particles seem to damp away from the beam core, on resonance islands

Perspectives

- Optimise the TME cell for realistic magnet parameters
- Reiterate sextupole optimisation and non-linear dynamics including magnet and wiggler field errors
- Include space effect: in fact the space charge tune-shift at injection is negligible but when the beam shrinks it becomes quite large

$$\Delta\nu_y = \frac{N_{bp} r_0}{(2\pi)^{3/2} \gamma^3 \sigma_s} \oint \frac{\beta_y}{\sigma_y(\sigma_x + \sigma_y)} ds \approx 0.15$$

and should be taken into account at least in the tune optimisation

- Include effect of radiation damping, excitation and IBS in the non-linear optimisation process
- Use symplectic integrators + resonance analysis (frequency and diffusion maps)