

Non-Conventional Scattering Studies using an Image Plate Diffractometer Lynne Thomas

Introduction

- Weak scattering
 - Diffuse Scattering
 - Liquid Scattering
- Image Plate (Rigaku R-axis/Rapid)
 - Large dynamic range
 - No dark current accumulation
 - Long images possible
 - Large regions of reciprocal space accessible in a single image
 - 465 mm x 258 mm active area
 - Mo or Cu radiation

Diffuse Scattering

- Where local order is present get structured diffuse scattering
- Much weaker than Bragg scattering
 - Often more difficult to see
- Located both around Bragg peaks and between
 - Need to survey large regions of reciprocal space
- This disorder can be important for properties
 - Dielectrics, NLO, etc...

Diffuse Scattering - Pentachloronitrobenzene

Synchrotron

Lab Image plate

Diffuse Scattering - Pentachloronitrobenzene

Synchrotron

Lab Image plate

Diffuse Scattering – modelling

- Modelling the disorder
 - Monte Carlo modelling
 - Cluster calculations

Diffuse Scattering - modelling

- Successful modelling of diffuse scattering
- Not always the most obvious cause

Diffuse Scattering - benzil

Uncorrected Corrected

Diffuse Scattering – co-crystals

- Similar features to PCNB?
- Another layered material
- Stacking faults?

Diffuse Scattering – co-crystals

Liquid Scattering

Nucleation

- Polymorphism
- Is there a basic building block that can be consistently detected prior to crystallisation?
- Choose substituted benzoic acids as a standard sample
 - Consistently form dimers in the solid state
 - Do these form in the liquid state? fingerprint?
 - 1M samples contained in capillary
 - Careful background measurements essential including solvent

Liquid Scattering – substituted benzoic acids

- Benzoic acid methanol solution
- Significant scattering from solution
- Reasonable G(r) Interpretation on-going

Liquid Scattering – chlorobenzoic acids

- Raw corrected data significantly different
- Need to convert to G(r)
- Careful application of corrections required

3-chlorobenzoic acid

2-chlorobenzoic acid

Diffuse & Liquid Scattering – what next?

Diffuse

- Reciprocal space reconstructions vital
- Measurement of principal reciprocal space slices in a single image e.g. hk0, h0l, 0kl
- Important that the Bragg peaks overlay well

Liquids

- Reliable way to extract corrected G(r)
- Long beamstop to gain more small angle data
- Fingerprint for simple molecular cluster/association

Modelling

- Diffuse: increased use of Monte Carlo and RMC
- Other methods of model generation supercells, etc
- Liquid: modelling using EPSR or PDF analysis
- Neutron data? Liquid-specific PDF program?

Conclusions

- Can collect good quality diffuse scattering images on the Rigaku R-axis/Rapid
 - Simple corrections enhance the weaker scattering
- To date modelling carried out on synchrotron or specialist instruments
 - Potential to apply to standard laboratory instrument data
- Can measure good quality liquid scattering
 - Potential to identify a fingerprint for interactions
 - Chlorobenzoic acids a promising start

Acknowledgements

- Andy Parkin (Glasgow)
- Chick Wilson (Glasgow)
- Sylvia McLain (Oak Ridge)
- Jacqui Cole (Cambridge)
- Richard Welberry (ANU)
- Darren Goossens (ANU)
- Rigaku