Oct. 22-23, 2007 Total scattering Pair Distribution Function analysis using X-rays and neutrons: powder diffraction and complementary techniques PDF Powder Diffraction Workshop at ESRF, Grenoble

Structural Analysis of Nano-Transition-Metal-Oxides

Quantum Beam Science Directorate, Japan Atomic Energy Agency
Shamoto S., likubo S., Kodama K., Taguchi T.Research Institute for Sustainable Humanosphere, Kyoto University,
Tokyo University of Science,
Japan Synchrotron Radiation Research Institute,
Argonne National Laboratory,
Los Alamos National Laboratory,Koyanaka H.
Tokyo University of Science,
Los Alamos National Laboratory,
Proffen Th.

Introduction

High Intensity & High Resolution Total Scattering Diffractometers

Small angle scattering effect on

Particle form factor on

Research examples of nano-materials

Chemical Composition of a Gold

Nand In-

Adsorbent

Introduction

High Intensity & High Resolution Total Scattering Diffractometers

r-resolution (Δr) Accessible highest $Q(Q_{max})$ $\Delta \land \pi / Q_{max}$

Accessible highest $r(r_{max})$ Q-resolution (ΔQ) $r_{max} \sim \pi / \Delta Q$

S. Shamoto et al., KEK Report 16 (2001) 33 in Japanese. Th. Proffen et al., Appl. Phys. A 74[Suppl.] (2002) S163-165. X. Qiu et al., J. Appl. Cryst. 37 (2004) 110.

High Intensity & High Resolution

Long scale structure with high r-resolution

Nanoparticle structure

"Finite Size Effects of Nanoparticles to the Atomic Pair Distribution Functions" K. Kodama, S. likubo, T. Taguchi and S. Shamoto, Acta Cryst. A 62 (2006) 444-453.

$$S_L(Q) = 1 + \frac{1}{Q} \int_0^\infty f(r) G_\infty(r) \sin(Qr) dr$$

$$S_{S}(Q) = \frac{1}{Q} \int_{0}^{\infty} 4\pi r (\rho_{0}' - \rho_{0}) f(r) \sin(Qr) dr$$

Versatile High Intensity Total Scattering Spectrometer in JSNS

$$G(r) = \frac{2}{\pi} \int_0^\infty Q[S_L(Q) - 1 + S_S(Q)] \sin(Qr) dQ$$

$$= f(r)G_{\infty}(r) + 4\pi r(\rho_0' - \rho_0)f(r)$$

$$G_L(r)$$

$$G_S(r)$$

 $\approx f(r)G_{\infty}(r)$

"Finite Size Effects of Nanoparticles to the Atomic Pair Distribution Functions" K. Kodama, S. likubo, T. Taguchi and S. Shamoto, Acta Cryst. A 62 (2006) 444-453.

"Finite Size Effects of Nanoparticles to the Atomic Pair Distribution Functions" K. Kodama, S. likubo, T. Taguchi and S. Shamoto, Acta Cryst. A 62 (2006) 444-453.

Research examples of nano-materials

Photo catalyst

TiO₂ nanoparticles

Particle pair correlation Surface of nanoparticle

Aggregated nanoparticle

Nanoparticle

Crystalline

Spherical particles with various diameters $G(r) = \sum N_i f_i(r) G_{\infty}(r)$ $f_i(r) = \frac{1}{2} \left(\frac{r}{2a_i} \right)^3 - \frac{3r}{4a_i} + 1$

No atomic correlation between particles

100

 $R_{wp} = 18.4 \%$ a=3.7921(4) Å⁻¹ c=9.477(3) Å⁻¹

With increasing temperature

NPDF (LANSCE)

Thermal gravimetric analysis of TiO_2 nanoparticle sample.

Structure functions of TiO_2 nanoparticle and bulk samples at various temperatures.

Surface dehydration of nanoparticle

NPDF (LANSCE)

600 C data fitting R_{wp} =15.4%.

PDFs at various temperatures.

Only particle mean size increases!

Research examples of nano-materials

Gold adsorbent nano-Mn-oxide

1 ppt Gold 10 L Sea water, 10 g adsorbent, 3 days 19 ng gold extraction

SEM & EDX images of grown gold particles on the adsorbent

Koyanaka, H.; Takeuchi, K.; Loong, C.-K. Sep. Purif. Technol. 2004, 43, 9.

Chemical composition of the nano-Mn-oxide

$$c_{\rm Mn} = \frac{1}{2} \frac{W\langle b \rangle^2}{n |b_{\rm Mn} b_{\rm O}|} = \frac{1}{1+x}$$

 c_{Mn} : atomic fraction of manganese ion in MnO_x *W* : integrated intensity of a RDF peak *n* : the coordination number (CN) of a Mn ion.

$$2x = n \exp\left(\frac{l_0 - l_1}{B}\right)$$

 I_0 and *B* are bond valence sum parameters I_1 : the nearest neighbor bond length between transition metal and oxygen ions.

n=6 (C.N.) $c_{Mn}=0.33 \pm 0.03 \text{ (Neutron)}, 0.327 \pm 0.012 (X)$ $2x = 3.91 \pm 0.35 \text{ (Neutron)}, 3.85 \pm 0.15 (X)$... $Mn^{+3.9}O_2$

 $\begin{array}{c}
40 \\
20 \\
0 \\
\hline \\ \\
\end{array} \\
-20 \\
-40 \\
2 \\
4 \\
6 \\
8 \\
10 \\
r(Å)
\end{array}$

NPDF (LANSCE)

MnO₂

D. I. Brown, D. Altermatt, Acta Cryst. B 41, 244, (1985).

S. likubo, H. Koyanaka, S. Shamoto, K. Takeuchi, S. Kohara, K. Kodama, C.-K. Loong, in preparation.

Crystal structure of the nano-Mn-oxide

 α -MnO₂

 $R-MnO_2$

 β -MnO₂

Reciprocal Space

BL04B2 beamline (SPring-8) incident energy of 61.63 keV, $\lambda = 0.20118$ Å

Real Space

Small angle scattering effect on

Particle form factor on

Research examples of nano-materials

Nano-Ti-	Surface crystal water/Hydroxyl group
oxide	randomly occupy surface sites

Nano-Mn-
oxideChemical composition
and Crystal structure

A picture is worth 1000 words.

A workshop is worth 1000 papers.

SABAC2008

January 10-11, 2008, Tokai, Japan

International Workshop on Structural Analyses Bridging over between Amorphous and Crystalline Materials http://nsrc.tokai-sc.jaea.go.jp/sabac/

IUCr

2008, Osaka, Japan