Software for PDF analysis **Overview**

Thomas Proffen

NPDF instrument scientist Lujan Neutron Scattering Center Los Alamos National Laboratory tproffen@lanl.gov LA-UR 07-0197

UNCLASSIFIED

Experimental considerations or

What makes a good PDF ?

UNCLASSIFIED

What is required to obtain high quality PDFs ?

The PDF (similar to the Patterson) is obtained via Fourier transform of the normalized total scattering S(Q):

$$G(r) = \frac{2}{\pi} \int_{0}^{\infty} Q[S(Q) - 1] \sin(Qr) dQ$$

Requirements to obtain 'good' PDF:

High momentum transfer, Q_{max}.
 High Q-resolution.
 Good counting statistics @ high Q.
 Low instrument and stable background

Where ?

Synchrotron sources (high energy X-rays)

or

• LOS Alamos

UNCLASSIFIED

What makes a good PDF: Influence of Q_{max} ...

What makes a good PDF: Influence of Q resolution ...

LUJAN CENTER

Nano-PDF: Example gold nanoparticles

K.L. Page, Th. Proffen, H. Terrones, M. Terrones, L. Lee, Y. Yang, S. Stemmer, R. Seshadri and A.K. Cheetham, **Direct Observation of the Structure of Gold Nanoparticles by Total Scattering Powder Neutron Diffraction**, *Chem. Phys. Lett.* **393**, 385-388 (2004).

UNCLASSIFIED

Data Reduction

or

How difficult is the processing of total scattering data ?

UNCLASSIFIED

Neutron data processing

Software: PDFgetN

- Based on GLASS package.
- Graphical users interface & integrated plotting.
- Supports most TOF neutron powder file formats.
- Records all processing parameters as part of output files G(r) and S(Q).
- Runs on Windows 95/98/NT/2000 and UNIX

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

		Data	lies (without asc extension) - Fo	emiat.			
Sample(s Sam bac	i): kgr.:		Vanadium Van. backgr.	Container Cont. back	.gr.:		
Working o	directory. C:/1	Thomas/pdf	/test/debug/gui/				
Se	mple informatio	in I	Setup I				
Run Tr Instrum	fe:	_		Welcome Versic Build Fri Aug 1	o POFgetN n 1.3.6 0 11 23 43 20	01	
Sampl			of this program:				
Delete all	e backgr /anadium Container Container	None None None Blend br	P.F.Peterson, M.Gutmann user-friendly programs function and the pair of diffraction data, J. Ap Homepage http://www.pa	a, Th.Proffen. to extract the distribution of spl. Cryst., 1 .mem.edu/cmp/)	and S.J.1 total sci hunction fr 0, 1192 () hillinge-gr	L.Billin attering rom meut: 2000) coup/pro	ge, PDFgetN: A structure ron powder grams/PDFgetN/
Delete all	/anadium 4 Container 4 Create S(0) Detaults read	None None None Blend bt from C/Pr	P.F.Peterson, M.Gutmann user-friendly programs function and the pair of diffraction data, J. Ay Homepage http://www.pa.	a, Th.Proffen. co extract th Mistribution : ppl. Cryst., : mew.edu/cmp/) Selecter	and S.J.J total sci bunction fr J, 1192 (J dillinge-gr fistory File	Billin attering rom meut: 2000) roup/pro	ge, PDFgetN: Å structure ron powder gramm/PDFgetN/

http://pdfgetn.sourceforge.net

P.F. Peterson, M. Gutmann, Th. Proffen and S.J.L. Billinge, **PDFgetN: A User-Friendly Program ..**, *J. Appl. Cryst.* **33**, 1192 (2000).

• Los Alamos

UNCLASSIFIED

Software: NPDF creates PDF automatically !

 S(Q) and G(r) automatically generated.

- Access via instrument web site.
- Click PDF information

UNCLASSIFIED

Software: NPDF creates PDF automatically !

X-ray data processing

New rapid PDF setup (PDF in seconds).

UNCLASSIFIED

PDF workshop – October 22-23, 2007

X-ray corrections: Removal of Compton scattering

Energy sensitive detector (e.g. Ge detector) allows separation of Compton scattering at higher Q.

> Modes:

- SCA: Electronic windows to separate elastic channel
- ➤ MCA: recording of complete spectrum at each measured point → software integration.

UNCLASSIFIED

Software: PDFgetX2

- Reads SPEC files.
- Supports MCA and SCA data.
- Integrated plotting of various corrections applied.
- Tools for merging scans.
- Runs on Windows and UNIX. Based on IDL.

X. Qiu, J. W. Thompson, and S. J. L. Billinge, *J. Appl. Cryst.* **37**, 678-678

Title:	-ray PDF	Producer: xiarJgyun
History -> File Autosave:	ON - Quiet: OFF - Working Directory:	/u24/xiang/un/projects/PDFgetX2/source
	Data File Format: SPEC Customize Batsha	ob. Edit Exp. Secrets
Sample:	Sam. Bkg.: [] Container:	Ĭ Con. Bkg.:
Detector # K Cobraa	Der Cobiraa Der Hiz Col Xirda	Kraen Ádd Sera Mol Sera
🗖 1 🛛 Ualaoura =	Ualaoun I Ualaoun I I	I I
Ual.aoyn =	Ualaoun - Ualaoun - I	Ĭ
Expt. Configuration Sample	Intermetion I ((C)) Noting I (Colth N(C)) Corre-	
	Internation (Q) Secup (Came) (Q) Corre	ctions G(r) Optimization Data Visualization
Method: 🔷 Generic	↓ I(C) Sizon. SetUp: Elsone =	Ctions G(r) Optimization Data Visualization Image: Laue Diffuse Scattering
Method: 🔷 Generic	I(Q) Sizer. SetUp: Elsenc = Compton Scattering	Ctions G(r) Optimization Data Visualization Laue Diffuse Scattering Weighting Function Type: <asf>^2</asf>
Method:	I(G) Shou. SetUp: Elsons = Compton Scattering profile: emperical form =	Ctons G(t) Optimization Data Visualization Image: Lawe Diffuse Scattering Image: Weighting Function Type: <asf>^2 = Qotare \$00000 Width. Qotare \$00000 Width.</asf>
Method: Generic	I(Q) Statu: Statup: Elsons = Compton Scattering profile: emperical form = Rulandwin Func. Width: D 0100000	Ctons G(t) Optimization Data Visualization Image: Lawe Diffuse Scattering
Method: Generic Sample Self-Absorption Multiple Scattering (2nd only) Oblique Incidence Trensmissoin Coeff.: B380000	I(G) Size: SetUp: Elsens = Compton Scattering profile: emperical form = Rulandwin Func. Width: D 010000C	Ctons G(t) Optimization Data Visualization Image: Law Diffuse Scattering Image: Weighting Function Type: casf>^2 = Qetext B.00000 Width. Image: Law Diffuse Scattering Cycles: Image: Law Diffuse Scattering Image: Law D
Method: Generic Sample Self-Absorption Multiple Soattering (2nd only) Oblique Incidence Trensmissoin Coeff.: Dissoccool Fluorescence Type: Conottant	I (G) Sizol. Stetup: Elsons = Compton Scattering profile: emperical form = Rulandwin Func. Width: 00100000 Breit-Dirac Factor Expo: 3 =	Ctons G(r) Optimization Data Visualization If Lave Diffuse Scattering Image: Constant Scattering Image: Constant Scattering Image: Weighting Function Type: casf>^2 Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Constant Scattering Image: Const
Method: Generic Method: Generic Multiple Self-Absorption Multiple Scattering (2nd only) Oblique Incidence Transmissoin Coeff.: D.NS0000 Fluorescence Type: Guantaar Scale: D.200000	It(g) Site() Feat. Set() Feat. Se	Ctons G(t) Optimization Data Visualization If Lave Diffuse Scattering If Meighting Function Type: <asf>^2 = Qotact \$00000 Weighting Function Type: <asf>^2 = Qotact \$00000 Weighting Function Type: <asf>>2 = Smoothi</asf></asf></asf></asf></asf></asf></asf></asf></asf></asf></asf></asf></asf></asf>
Method: & Generic Sample Self-Absorption Multiple Scattering (2nd only) Oblique Incidence Trensmissoin Coeff.: D.850000 Fluorescence Type: Conotoat Scale: D.250000 X-ray Polarization	 I(Q) Statu I (Q) Setup real. I(Q) Statu I (Q) Statup real. I(Q) Statu I (Q) Statup real. Gompton Scattering profile: emperical form = Rulandwin Func. Width: D010000C Breit-Dirac Factor Expo: 3 = Energy Dependent: 1/E Linesz = a: D035000C b: 535555357 	Ctons G(t) Optimization Data Visualization I Leve Diffuse Scattering Item State Item State Weighting Function Type: <asf>2 Item State Qetert \$00000 Weighting Cycles: \$600 Edit S(Q) wt: Const. +: \$100000 *: \$10000 Cetert \$500000 Width: \$100000 *: \$100000 Cetert \$500000 Width: \$100000 \$100000 \$100000 Smoothing Qmin: \$1200000 Width: \$20000 \$20000 I Damp F(Q) Gaussin Width (/A): \$200000 \$20000 \$200000 \$200000</asf>
Method: Ceneric Sample Self-Absorption Multiple Scattering (2nd only) Oblique Incidence Transmissoin Coeff:: D.SN0000 Fluorescence Type: Coaorbat Scale: D.Scoooc X-ray Polarization	If (Q) State (Content of the state of t	Ctons G(t) Optimization Data Visualization Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scattering Image: Law Diffuse Scatering
Method: \diamond Generic Sample Self-Absorption Multiple Scattering (2nd only) Oblique Incidence Transmissoin Coeff.: Discococ Fluorescence Type: Countrant Scale: Discococc X-ray Polarization Scale with High Q Ratio: 0.0 Reset Data Get I(Q)	 I(Q) State I (Q) Setup (Canc.) I(Q) State I (Cancella (Canc	Ctons G(r) Optimization Data Visushization If Lane Diffuse Scattering If Lane Diffuse Scattering Weighting Function Type: cast>2 = Qeter: 500000 Width. 100 Edit S(Q) wt: Const. = +: 1000000 *: 1000 Qeter: 500000 Width. 100 Cycles. 1000 Geter: 500000 Width. 100 Cycles. 1000 Smoothing Qmin: 12.0000 Width. 100 1000 Interpolate Qmin to 0.0 Linesz = Plot Data Advanced->

http://www.pa.msu.edu/cmp/billinge-group/programs/PDFgetX2/

UNCLASSIFIED

What to do with your PDF ?

UNCLASSIFIED

Outline

• What to do with your PDF?

• Give it to your favorite theorist.

- Try 'experimentalists' modeling
 - Modeling base on a structural model
 - A new parameter r
 - Small models: Least square refinements
 - Large models: Reverse Monte Carlo
 - Any model: Evolutionary Algorithms

UNCLASSIFIED

Refinement range – length scales in structure

- Simulated structure of 20x20x20 unit cells.
- Matrix (M): blue atoms
- Domains (D): red atoms, spherical shape, d=15Å.
- Simulated using DISCUS.

Th. Proffen and K.L. Page, **Obtaining Structural Information from the Atomic Pair Distribution Function**, *Z. Krist.* **219**, 130-135 (2004).

• Los Alamos

UNCLASSIFIED

Refinement range – length scales in structure

- Top: Single-phase model with blue/red fractional occupancies (O).
- Bottom: Refinement
 of same model for
 5Å wide sections.
- Extensions:
 - Multi phase models
 - Modeling of boundary
 - R-dependent refinable mixing parameters

Refinement range – the mystery of LaMnO₃

Calculating a PDF ..

Calculating a PDF from a structural model:

$$G(r) = \sum_{ij} \left[\frac{b_i b_j}{\langle b \rangle^2} \delta(r - r_{ij}) \right] - 4\pi r \rho_0$$

- Thermal motion
 - − Small crystal \Rightarrow convolution of δ (r-r_{ij}) with distribution function (*PDFFIT*)
 - Large crystal ⇒ actual displacements
 & ensemble average (*DISCUS*)
- Termination ripples
 - Multiplication with step function in reciprocal space gives convolution with sin(Q_{max}r)/r in real space.

PDF analysis: Analysis of individual peaks

UNCLASSIFIED

Nanoparticles: Particle size

PDFfit

Refining a small structural model to the PDF

UNCLASSIFIED

PDFfit: Refinement of a small structural model

- "Real space Rietveld"
- Refinement of structural parameters: *lattice parameters, atom positions, occupancies, adp's, ..*
- Small models (<200 atoms).
- Corrections for Q_{max}, instrument resolution, correlated motion.
- Software: PDFfit, PDFfit2 and PDFGui.

K.L. Page, Th. Proffen, S.E. McLain, T.W. Darling and J.A. TenCate, Local Atomic Structure of Fontainebleau Sandstone: Evidence for an Amorphous Phase ?, *Geophys. Res. Lett.* **31**, L24606 (2004).

UNCLASSIFIED

Calculating a PDF: PDFfit

PDF calculated according to

In more detail

$$G(r_k, s) = f_s B_k(s) \sum_{p=1}^{P} f_p G_p(r_k, s)$$

$$G_p(r_k, s) = \frac{1}{N_p r_k} \sum_i \sum_j [A_{ij}(p) \cdot T_{ij}(r_k, p)]$$

$$-4\pi r_k \rho_0(p)$$

$$B_k(s) = \exp\left[-\frac{(r_k \sigma_Q(s))^2}{2}\right]$$

$$A_{ij}(p) = \frac{c_i(p)c_j(p)b_i b_j}{\langle b \rangle^2}$$

$$T_{ij}(r_k, p) = \frac{1}{\sqrt{2\pi}\sigma_{ij}(p)} \exp\left[-\frac{(r_k - r_{ij}(p))^2}{2\sigma_{ij}^2(p)}\right]$$

 $G(r) = \sum_{ij} \left| \frac{b_i b_j}{\langle b \rangle^2} \delta(r - r_{ij}) \right|$

UNCLASSIFIED

 $-4\pi r\rho_0$

PDFgui – looks cool ..

UNCLASSIFIED

RMC

Shaking a big box of atoms.

Courtesy of M. Tucker, ISIS

UNCLASSIFIED

Reverse Monte Carlo

- Commonly used to model glasses and liquids (no long range order).
- Recently applied to disordered crystalline materials.
- Large model structures.
- Importance of constrains.
- Uniqueness of solution ?

R.L. McGreevy and L. Pusztai, **Reverse Monte Carlo Simulation: a New Technique for the Determination of Disordered Structures**, *Mol. Simul.* **1**, 359-367 (1988).

M.G. Tucker, M.T. Dove and D.A. Keen, **Application of the Reverse Monte Carlo Method to Crystalline Materials**, *J. Appl. Cryst.* **34**, 630-638 (2001).

UNCLASSIFIED

RMC: How does it work ?

Include Bragg intensities ..

Use GSAS to fit : Peak shape Background Lattice parameters RMCProfile calculates the intensities and then produces the profile.

$$+\sum_{j}|I_{expt}(t_{j})-sI_{calc}(t_{j})|^{2}/\sigma_{I(t_{j})}^{2}$$

LUIAN CENTEI

Software: RMCprofile and DISCUS

- RMCprofile
 - Atomic configurations ~600 to 2000+ atoms
 - Fit both X-ray and neutron F(Q)
 - Fit G(r)
 - Fit Bragg profile (GSAS tof 1,2 & 3)
 - Polyhedral restraints
 - Coordination constraints
 - Closest approach constraints
- Produce a static 3-D model of the structure (a snap-shot in time)
- Link: <u>http://www.isis.rl.ac.uk/RMC</u>

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

PDF

DIFFEV

Refining parameters of a disordered particle/crystal

Courtesy of R.B. Neder, U Würzburg

UNCLASSIFIED

DIFFEV: Refining model parameters

PDFfit and RMC

- Refine structure directly in terms of atom coordinates etc ..
- Difficult for complex systems
- Alternative
 - Refine parameters of a structural model and not each atom.

UNCLASSIFIED

- Example nanoparticle: *diameter, atom spacing, stacking fault probability, ...*
- Choose minimization here DIFFEV

Example: ZnSe nanoparticles - Model

create a large single Wurtzite layer A/B

Stack along c (with faults)

Cut to proper size

Calculate PDF / powder pattern

Repeat and average

Repeat with new set of parameter using a Differential Evolutionary Scheme

{110} and {001}

Software: DISCUS and DIFFEV

UNCLASSIFIED

Example: ZnSe nanoparticles - Results

Diffuse package: DISCUS, PDFfit and DIFFEV

- PDFfit
 - User defined relation between parameters and refinement variables.
 - Multiple structural phases and data sets (neutron and X-ray) supported.
- DISCUS
 - Calculation of Fourier transform, inverse and difference Fourier.
 - Expand structure from asymmetric unit and space group symbol.
 - Structure "statistics": correlations, real space lots, ...
 - PDF calculations.
 - Monte Carlo simulations.
 - Reverse Monte Carlo simulations diffuse scattering & PDF.
 - Symmetry & unit cell transformations.
- DIFFEV: General minimization using evolutionary algorithms
- KUPLOT: General plotting program
- Common features
 - Command language including loops and IF statements.
 - Online help function
 - UNIX or Windows operating system.
 - Binary or source code distribution.
 - Written in FORTRAN-77 (and some C).
- Link: <u>http://discus.sourceforge.net</u>

Th. Proffen and R.B. Neder, *J. Appl. Cryst.* **30**, 171-175 (1997).
Th. Proffen and S.J.L. Billinge, *J. Appl. Cryst.* **32**, 572-575 (1999).

UNCLASSIFIED

The DISCUS cook book – coming soon !

- To be published by Oxford University Press as IUCr text.
- Includes CDROM with many examples.

Summer 2008

8.4 Ordering and distribution of domains 123

sorting process uses shifting of individual atoms as well as switching of randomly picked pairs, lines 35 and 36. Such a sorting process does not try to mimic the actual diffusion within a crystal, but just tries to create the indented result efficiently.

Notice, that the shifting of the pseudo atoms allows these to assume any fractional position within the host metric. In the final structure all atoms, the host and domain atoms shall occupy the position (0,0,0). To achieve this, all pseudo atoms are shifted to the next integer lattice point after the sorting has finished. After the sorting process the structure will look like in Fig. 8.7, which shows a section of the total crystal. Finally, the sorted arrangement of domains is used by the macro called 'dom.spheres.replace.mac' to replace part of the atoms within the host crystal by the domain structures. This step is essentially identical to the corresponding step in previous examples. After defining the input mode to pseudo (line 6) and naming the input file dom.sph.domains.list (line7), the parameters for the two domains are defined. Each domain character is defined as a spherical domain (lines 8 and 18), yet still a minimum distance to the atoms in the original crystal is defined via assign fuzzy, AA, 2.0 (lines 9 and 19). The radius of the two domain types is given by expanding the shape matrix by a factor of 2.4 and 1.4, respectively. After the replacement, the structure looks like Figure 8.4. The spherical domains are placed at average distances throughout the original structure. Remember that no angular correlation was introduced. The Fourier transform of the final structure shows intense ring shaped diffuse scattering around each Bragg reflection. This diffuse scattering is due to the fact that the difference between the host and the domains is just the ordering of equal atoms into respective domains. Such a short range order between atoms of equal type will give diffuse scattering in the vicinity around each Bragg reflection. The Fourier transform of the domain distribution is multiplied with the

Pile donais/don.spites.regiae.mac i donais/don.spites.regiae.mac donais/donais.expite.mai donais/donais.expite.mai donais/donais.expite donais.expite don

-

Fig. 8.8 Left: Final crystal structure. The short range order domain distribution has been replaced by the costmonoiding spherical guest structures. Right: Fourier transform of the crystal with ordered domain distribution.

[L 0 0]

Los Alamos
 NATIONAL LABORATORY

UNCLASSIFIED

LUIAN CENTER

Summary and more information

 Refinement of structural models based on PDF is becoming more routine.

- PDF refinements as function of 'r' give structural information as function of length scale.
- Software is out there.
- More great software is coming ...
- Involve your favorite theorist !

http://www.totalscattering.org

UNCLASSIFIED

UNCLASSIFIED