Pressure-Induced Amorphisation in  $ZrW_2O_8$ :

A Structural Analysis based on Reverse Monte Carlo Modelling of Neutron and X-ray Total Scattering

David Keen

ISIS Facility Rutherford Appleton Laboratory UK





#### **Talk Outline**

- •The local structure of crystalline  $ZrW_2O_8$  where is the flexibility?
- The structure of pressure-induced amorphous  $\rm ZrW_2O_8$  implications for PIA more generally





# Negative Thermal Expansion Materials

#### USES:

They can be mixed with POSITIVE thermal expansion (PTE) materials to produce composites with approximately ZERO thermal expansion (ZTE)

- High precision instruments
- Cooker hobs

- Astronomical telescope mirrors
- Casserole dishes

#### **MECHANISM**:

Since bonds expand when the material is heated, some other part of the structure must contract more than the bonds expand...





## **RMC** Modelling Algorithm







## RMC*Profile* for Modelling Crystalline Disorder

Use neutron and/or x-ray total scattering data collected at ISIS, ESRF etc.

Start with crystal structure from fitting the Bragg peaks

- Cell dimensions
- Density
- Initial atom positions

Refine with RMC

- Fit both S(Q) and G(r)
- Restrain bonds/polyhedra
- Fit Bragg profile

$$\begin{split} \chi^{2}_{\text{RMC}} &= \sum_{j} \, \chi^{2}_{j} \\ \chi^{2}_{\text{F}(Q)} &= \sum_{j} \left[ \mathsf{F}_{\text{calc}}(Q_{j}) - \mathsf{F}_{\text{box}}(Q_{j}) \right]^{2} / \sigma^{2}_{\text{F}(Q)}(Q_{j}) \\ \chi^{2}_{\text{G}(r)} &= \sum_{j} \left[ \mathsf{G}_{\text{calc}}(r_{j}) - \mathsf{G}_{\text{expt}}(r_{j}) \right]^{2} / \sigma^{2}_{\text{G}(r)}(r_{j}) \\ \chi^{2}_{\text{profile}} &= \sum_{j} \left[ \mathsf{I}_{\text{calc}}(t_{j}) - s' \mathsf{I}_{\text{expt}}(t_{j}) \right]^{2} / \sigma^{2}_{\text{I}(i)}(t_{j}) \\ \chi^{2}_{\text{f}} &= \sum_{k} \, w_{k} \left[ \, f_{k}^{\text{calc}} - f_{k}^{\text{req}} \right]^{2} \\ \mathsf{I}_{\text{calc}}(t_{j}) &= \sum_{hkl} \, \mathsf{L}_{hkl} \big| \mathsf{F}(hkl) \big|^{2} \mathsf{R}_{hkl}(t_{j} - t_{hkl}) + \, \mathsf{B}(t_{j}). \end{split}$$

Produces a static 3-D atomistic model of the structure





## Zirconium Tungstate, ZrW<sub>2</sub>O<sub>8</sub>



J S O Evans et al





## Structure of ZrW<sub>2</sub>O<sub>8</sub>



• A proposed mechanism for NTE is based on Rigid Unit Modes (RUMs).

• Flexible linkages facilitate the rotations and translations of the 'inflexible' polyhedra.

• The effect of increased rotations with increased temperature is to cause the polyhedral centres to come closer together





# What are the 'rigid' polyhedra in ZrW<sub>2</sub>O<sub>8</sub>?

• Early work was based on 'rigid' units of  $ZrO_6$  octahedra and  $WO_4$  tetrahedra; the corner shared Zr-O-W linkages and under-bonded  $WO_4$  tetrahedra provide the flexibility.



• XAFS work has challenged this assertion; a 'stiff' Zr-O-W linkage was observed [Cao *et a*/PRL 89 215902 (2002) & PRB **68** 014303 (2003)].



• We have used neutron total scattering to test these hypotheses.





#### RMCProfile results from $\alpha$ -ZrW<sub>2</sub>O<sub>8</sub>







## Local Structure in ZrW<sub>2</sub>O<sub>8</sub>







## Linkage Flexibility in ZrW<sub>2</sub>O<sub>8</sub>







### W-O-Zr Bond Angles in ZrW<sub>2</sub>O<sub>8</sub>







## 'Bond' Length Changes in ZrW<sub>2</sub>O<sub>8</sub>



How might we understand the large local W1... W2 bond expansion?





## W1...O3-W2 Bond Angles in ZrW<sub>2</sub>O<sub>8</sub>







#### **RMC-derived model and XAFS data**



Data from Cao *et al PRB* 68 014303 (2003)





## ZrW<sub>2</sub>O<sub>8</sub> Crystal Summary

- $\bullet$  ZrW2O8 does not possess a 'stiff' Zr-O-W linkage; we believe that difficult XAFS multiple scattering corrections could have produced this conclusion
- $\bullet$  The temperature-dependence of the widths of the  $g_{ij}(\mathbf{r})$  peaks are consistent with a simple RUM model of the structure
- $\bullet$  It is the under-bonded WO\_4 tetrahedra which give the structure the flexibility needed for the significant NTE effect
- The structural units undergo a complex combination of translational and rotational motion

Tucker et al, PRL 95 (2005) 255501; J Phys CM 19 (2007) 335215



High pressure amorphisation of ZrW<sub>2</sub>O<sub>8</sub>



• Amorphous ZrW<sub>2</sub>O<sub>8</sub> can be recovered to room pressure

• Recovered amorphous  $ZrW_2O_8$  is ~26% more dense than crystalline  $ZrW_2O_8$  (0.0721 c.f. 0.0573 atoms/Å<sup>3</sup>)

• Neutron diffraction on GEM at ISIS on ~1cm<sup>3</sup> of sample recovered from ~4 GPa; X-ray diffraction on ID31 at ESRF

• What is it's structure?





## ZrW<sub>2</sub>O<sub>8</sub> Total Neutron Scattering Data



• 1<sup>st</sup> G(r) peak  $\Rightarrow$  W-O co-ord change from 4 to 3

- $2^{nd} G(r) \text{ peak} \Rightarrow Zr-O/W-O \text{ co-ord change from 6 + 0 to 6 + 2}$
- 3<sup>rd</sup> G(r) peak reflects the increased O-O packing





#### Comparison with In-situ Data







## Forming 'Amorphous' Model from $\alpha$ -ZrW<sub>2</sub>O<sub>8</sub>







#### RMC Goodness-of-Fit Parameters









#### ZrW<sub>2</sub>O<sub>8</sub> Amorphous Model (b); W-O-W Links

Co-ordination: 1 - turquoise 3 - green 5 - red 7 - purple 2 - It brown 4 - grey 6 - brown







## X-ray and Neutron Weighting Factors for ZrW<sub>2</sub>O<sub>8</sub>







## Amorphous-like Connectivity Within a Periodic Zirconium Array



• Model formed with "icerules" from crystal structure

• Displacive phase transition plus bond formation

• Correct density, sensible bond lengths and appropriate polyhedra

• Concerted rotations and translations of polyhedra allow the structure to fold in on itself and increase its density

• This is an appealing model!

Keen et al, PRL 98 (2007) 225501



### Acknowledgements

Andrew Goodwin (Cambridge), Matt Tucker (ISIS) Martin Dove (Cambridge) John Evans, Lars Peters (Durham) Wilson Crichton (ESRF), Michela Brunelli (ESRF)





