Study of the microscopic structure of concentrated electrolyte solutions through neutron diffraction and EPSR simulation

Silvia Imberti

ISIS facility, RAL, UK

Water ions mobility

	$\Lambda_0^{-\mathrm{m}}$	$-\Delta H_h$
	cm²/Ω mol	kJ/mol
Li ⁺	38.7	559
Na ⁺	50.1	444
K +	73.5	360
\mathbf{H}^{+}	350	1129
OH-	<i>192</i>	423
F-	55	474

•Mechanism of structural diffusion with effective charge transport (proton transfer)

•Breaking of an HB, reorientation of one or more water molecules, re-forming of an HB

Ab initio MD: D.Marx, M.E.Tuckermann, J.Hutter, M.Parrinello, *Nature* 397 (1999) 601

OH-: two schools of thought

Proton hole transfer

• Derived through symmetry arguments from the H⁺ case

• from the structural point of view implies the presence of three water molecules around OH-

J.J.Novoa et al., J.Phys.Chem. A 101 (1997) 7842-7853 N.Agmon, Chem.Phys.Lett. 319 (2000) 247-252

Pre-solvation rule

•from the structural point of view implies the presence of four water molecules around OH-

Ab initio MD:

D.Marx, M.E.Tuckermann, J.Hutter, M.Parrinello, Nature 397 (1999) 601 D.Marx, M.E.Tuckermann, J.Hutter, M.Parrinello, Nature 417 (2002) 925

Neutron Diffraction with	Isotopic	LiOH	1:12				
Substitution		NaOH	1:12	1:9	1:6	1:3	
		KOH	1:12		1:6	1:4	
Fascio trasmesso	Detector Campioned Fascio incidente	ione e					
	Incident scatterir	na lenath:	0.05	- 4.5 Å			
$Q = \frac{4\pi}{\lambda} \sin \theta$ Sample	Q range:		0.05	- 50 Å			
Detector	Moderator:		Liqu	Liquid methane at 110K			
$\lambda \longrightarrow 2\theta$	Incident flight path:		11 n	11 m			
	Final flight path:		0.75	0.75 - 4.0 m			
	Detectors:		1070	1070 ZnS			
	Angular range:		3.8°	– 39°			
	- 0 11 - 1	6			And Reason		

$$\frac{d\sigma}{d\Omega} = N\left[\frac{\sigma_{inc}}{4\pi} + \frac{\sigma_{coh}}{4\pi}S(q)\right] \qquad b_{inc}^2 = \frac{\sigma_{inc}}{4\pi} = \left[\langle b^2 \rangle - \langle b \rangle^2\right] \qquad b_{coe}^2 = \frac{\sigma_{coe}}{4\pi} = \langle b \rangle^2$$

•In the static approximation

$$S(\mathbf{q}) = \int_{-\infty}^{\infty} S(q,\omega) d\omega = 1 + \int \exp(i\mathbf{q} \cdot \mathbf{r}) [g(\mathbf{r}) - 1] d\mathbf{r}$$

• For a multi-component system

$$\frac{d\sigma}{d\Omega} = \sum_{\alpha} c_{\alpha} \frac{\sigma_{sc}^{\alpha}}{4\pi} + \sum_{\alpha\beta} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} S_{\alpha\beta}(q)$$
F(q)

$$S_{\alpha\beta}(q) - 1 = 4\pi\rho \int r^2 \left(g_{\alpha\beta}(r) - 1\right) \frac{\sin qr}{qr} dr$$

• H/D Isotopic **Substitution**

20

The Empirical Potential Structure Refinement

CONSTRAINTS:

•Density

•Intramolecular structure

Reference potential

 $U_{ref} = U_{Intra} + U_{Inter}$

Monte Carlo with molecular rototranslations

The Empirical Potential Structure Refinement

The Empirical Potential Structure Refinement

Hydroxyl ion solvation shell

Ionic mobility

	r	Λ_0^{-m}	$-\Delta \mathbf{H}_{\mathbf{h}}$		
	Å	cm²/Ω mol	kJ/mol		
Li ⁺	1.95	38.7	559		
Na ⁺	2.45	50.1	444		
K +	2.80	73.5	360		

Debye-Huckel-Stokes of a ion in a continuous medium

Water –Water correlations

- •The same effect can be seen in pure water under external pressure
- Breaking of HBonds
- Lower viscosity

•It's the combined effect of lower water viscosity and looser bond with surrounding water molecules which can explain the K+ higher mobility with respect to smaller ions.

It is by looking at the system as whole that we gain an insight in the singular molecular process Ionic channels through the cell membrane:

K+/Na+ or size selectivity mechanism

Beyond the bulk:

The nano-problem & the liquid scientist:

•Liquids and gases under confined geometry

•Convolution of correlations at different lenghtscales, from Small to "Wide" angle **Acknowledgments:**

Università degli Studi di ROMA TRE Alberto Botti Fabio Bruni Gerardo Cappa Rosaria Mancinelli Maria Antonietta Ricci

> ISIS, RAL, STFC Alan Soper Sylvia McLain

Thanks for your attention!

Hydroxyl ion solvation shell

In full agreement with (newer) abinitio simulations

in presence of counter-ion and with concentration dependence

B Chen, I Ivanov, J M Park, M Parrinello and M L. Klein J. Phys. Chem. B 2002, 106, 12006-12016

