

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

In-Situ Pair Distribution Function Measurements

Peter J. Chupas

Chemistry, Environmental, and Polymer Science Group X-ray Science Division Argonne National Laboratory

Talk Overview

(1) PDF Instrumentation (at the APS)
(2) "Time Resolved" Measurements
(3) Measurements requiring high sensitivity (e.g., seeing hydrogen with X-rays)

(4) New applications

(5) Potential instrumental developments

A brief history of X-ray PDF analysis

High Energy X-rays at the APS

The Advanced Photon Source - APS

High Energy X-Rays at beamline 11-ID at the APS

Overview of 11-ID at the APS

High Energy X-rays at the APS

Dedicated PDF facility at the APS

The Pair Distribution Function Method

- The structure factor S(Q) can be measured as a function of diffraction angle using monochromatic X-rays
- Application of area detector to yield more rapid measurements by collecting all data simultaneously

P.J. Chupas, X. Qiu, J.C. Hanson, P.L. Lee, C.P. Grey, S. Billinge, *J. Applied Cryst.*, **2003**, 36, 1342-1347.

High Real Space Resolution PDFs: The Need for High Q Measurements

 $Q_{max} = 4\pi \sin\theta/\lambda$

for Cu Ka, $\lambda = 1.54$ Å, $2\theta = 180^{\circ}$

$$Q_{max} = 4\pi \sin 90/1.54 = 8 \text{ Å}^{-1}$$

We typically use wavelengths between 0.20 and 0.08 Å

Accessibility to high resolution measurements

- •Sample volume ~ 0.08 mm³
- •Detector specific corrections are VERY import
 - •Energy sensitivity and Compton Scattering
 - •"Oblique Incidence"

Refinement Against Crystalline Models

In situ *reduction:* $Pt^{V}O_2 \rightarrow Pt^0$

Data can be collected in only 30 ms

Chupas, Chapman, Lee J. Appl. Crystallogr., 2007, 40, 463-470

In-situ measurements: The reduction of PtO₂ to Pt

Application of Time Resolved Studies:

Supported Metal Catalysts Following the kinetics formation of catalytic particles

Forming Supported Nanoparticles

TiO₂ Substrate

Forming Supported Nanoparticles

$Pt^{4+} + 4 e^{-} \rightarrow Pt^{0}$ $H_{2} \rightarrow 2H^{+} + 2e^{-}$

Reduction of 5% Pt⁴⁺ on TiO₂ Under H₂

•Reduction at constant temperature, 200 °C

Chupas, Chapman, Jennings, Lee, Grey J. Am. Chem. Soc., in press

Tracking the Kinetics of Particle Formation

Tracking the Kinetics of Particle Formation

Nest Step: Particle Growth

Combined PDF and SAXS measurements

Overview

Differential PDF selectively probes supported nanoparticles

- Fast time resolution possible
- Follow reaction

Probes reaction mechanism & kinetics

- Reagent consumption (bonds breaking)
- Bond formation
- Particle growth/annealing

Porous Coordination Frameworks

Can we probe the structure of weakly bound guest molecules?

Are open metal sites important for binding H_2 ?

Seeing hydrogen with X-rays?!

N₂ Sorption

Differential PDF

Differential PDF

11-ID-B

Differential PDF

Argonne

11-ID-B

Differential PDF

Differential PDF

Hydrogen Differential PDF

Argonne

11-ID-B

Structural Models

GPPD, **IPNS**

Structural Models

Enhancing Sorption

Applications of Micro-focused High-Energy X-rays (available at 1-ID at the APS)

-High pressure Studies from Diamond Anvil Cells

-Spatially Resolved Measurements

Focusing High-Energy X-Rays at 1-ID

*S. D. Shastri et al., J. Synchrotron Rad., 14, 204 (2007)

PDF at High Pressures

PDF of Gold in the DAC and Measured ex-situ

Martin, Antao, Chupas, Lee, Shastri, Parise Applied Physics Letters 86 (2005) 061910.

High Pressure PDF

Gold at High Pressures

Looking Ahead: The Potential for Future Instrumentation Developments

-Rapid Energy Resolved Measurements

-Simultaneous Measurements (e.g. combining PDF with SAXS)

-Anomalous

Compton Scattering

Petkov, Billinge, Shastri, Himmel, Phys Rev. Lett. 85, 3436 (2000)

Common Instrumentation Configurations

Rapid Energy Resolved Measurements?

Beno and Knapp Review of Scientific Instruments (1995) 60, 1308-1310.

High Energy Resolution Optics for High-Energy X-rays: Potential for Anomalous PDF Measurements

S. D. Shastri, J. Synchrotron Rad., 11, 150 (2004)

Example of High-Energy Resonant Scattering

- Ion Distribution in Pb₅Bi₆Se₁₄
- Bi and Pb distributed over 11 crystallographically unique sites

Zhang, Wilkinson, Lee, Shastri, Shu, Chung, Kanatzidis, J. Applied Crystall., 38, 433 (2005)

Acknowledgements

Karena W. Chapman (XSD, ANL) Evan R. Maxey (XSD, ANL) James Richardson (IPNS, ANL) Peter L. Lee (XSD, ANL) Guy Jennings (XSD, ANL) Mark Beno (XSD, ANL) Sarvjit Shastri (XSD-ANL) Clare P. Grey (Stony Brook) John B. Parise (Stony Brook) C. David Martin (XSD, ANL) Gabrielle Long (XSD, ANL) John W. Cahn (NIST) Leo Bendersky (NIST) Simon Billinge (MSU) Xiangyun Qiu (MSU)

Work performed at the Advanced Photon Source was supported by the U.S. Department of Energy, ₅₄ Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.