Local order of deuterium in metal deuterides

R. Černý

Complex transition metal hydrides

Interstitial hydrides

Fig. 5. The structural arrangement of the deuterium atom sites around the Zr atoms. The V atoms have been omitted for clarity. The sites which are connected by lines are about 1.3 Å apart. The distance between nearest sites 2/2A or nearest sites 2/2B is about 2.1 Å. In the disordered high temperature phase the deuterium atoms are distributed over all sites, whereas in the fully ordered low temperature phase they occupy only sites 2/2A. The tetragonal axes $a_1 = a_2$ and c vary with temperature as shown in Fig. 3.

Hydrides of Laves phases: YFe₂D_x, YMn₂D_x

Long range order (XRD + Magn.)

Long range order survives locally ?

J. Alloys and Compounds in press

Fig. 5. Deuterium configuration around zirconium and chromium sites in monoclinic $ZrCr_2D_{3.8}$ at 1.6 K.

Fig. 6. Connectivity of chromium by deuterium in monoclinic $ZrCr_2D_{3.8}$ at 1.6 K as viewed along b (zirconium atoms omitted for clarity).

YFe₂**D**_{4.2}

Intensity (arb. units)

YFe₂D_{4.2} LT-structure along [3 0 76] direction.

 YFe_2 structure along *b*-axis.

YFe₂D_{4,2} LT-structure: Chain of subgroups for transformation from *Fd-3m* to *Pc* with index [96]

YFe₂D_{4.2} - ordered

33169.gr:G

YFe₂D_{4.2} - disordered

33170.gr:G

$YFe_2D_{4.2}$ – locally ordered, D-D > 2.1 Å

YMn₂D₄

Intensity (arb. units)

YMn₂D₄

Intensity

YMn_2D_4

290 K

R3*m*, 4 metal and 3 deuterium atoms, D1 and D2 fully occupied, D3 half occupied a=5.8508, c=14.0491 Å

YMn₂D₄

r [A]

 ZrV_2D_4

Intensity (arb. units)

ZrV_2D_4

 ZrV_2D_4

Observations:

- PDFs of disordered and ordered structures look similarly up to alloy lattice parameter (~ 8Å), and then they start to differ
- PDF of disordered state cannot be well explained on short distances (transition metal deuterium) by random occupation of available sites by deuterium, even not if deuterium atoms are kept 2.1 Å apart

Can be PDF of disordered state explained by the local existence of the same transition metal – deuterium complexes like in ordered state?

Acknowledgement

Joanna Ropka, University of Geneva

Jim Richardson, IPNS Argonne

Thomas Proffen, LANL Los Alamos

Reinhard Neder, University of Erlangen

Simon Billinge, Michigan State University

Stefan Brühne, University of Frankfurt