

Molecular solids probed by PDF

Stefan Brühne

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Physikalisches Institut *and* Institut für Anorganische und Analytische Chemie

The sold state "in-between"

Brühne & Glinnemann, Z. Krist.: Discussion "What is a crystal?" (2007) online

The sold state "in-between"

Brühne & Glinnemann, Z. Krist.: Discussion "What is a crystal?" (2007) online

outline

traditionally, ,hard' solids are probed by PDF e.g. alloys

• Co₂Nb

outline

traditionally, ,hard' solids are probed by PDF e.g. alloys

• Co₂Nb

molecular solids, are they different?

traditionally, ,hard' solids are probed by PDF e.g. alloys Co₂Nb molecular solids, are they different? exploratory tour: organic superconductor

- organic Na-salt
- organic pigment
- pharmaceuticals

Co₂Nb

a Laves C15 phase, cF24, *Fd*-3*m*, *a* ≈ 6.8Å

Phase width > 5at%: Co_{2+x}Nb_{1-x}

G. Kreiner

Co₂Nb

a Laves C15 phase, cF24, *Fd*-3*m*, *a* ≈ 6.8Å

Phase width > 5at%: Co_{2+x}Nb_{1-x}

G. Kreiner

Co: CN12, icosahedron Nb: CN16, Frank-Kasper-polyhedron "P"

tcp: tetrahedrally close packed

8

Co₂Nb

shift in lattice constant
first peak Nb-Nb, Co-Nb

UNIVERSITÄT FRANKFURT AM MAIN

measured refined difference

Hier wird Wissen Wirklichkeit

difference

 $Co_{2.2}Nb_{0.8}$

the first peak is affected only, the rest virtually <u>not</u>

 $Co_{2.2}Nb_{0.8}$

a <u>very</u> local effect (*r* < 3.5Å), refinements under way...

but:

molecular solids, are they different?

κ-(BEDT-TTF)₂Cu(NCS)₂ – an organic superconductor

C. Strack, M. Lang

 $T_{c} = 10.4K$

κ-(BEDT-TTF)₂Cu(NCS)₂ – an organic superconductor

C. Strack, M. Lang

T_c = 10.4K T_{glass} ≈ 90K glass transition corresponds "somehow" to conformations e and s

Hier wird Wissen Wirklichkeit

κ-(BEDT-TTF)₂Cu(NCS)₂

ID15B data: f(T)

κ-(BEDT-TTF)₂Cu(NCS)₂

ID15B data: f(T)

differences at *r* ≈ 8.. 10Å

where do we expect changes?

set up models with a local cell containing different eclipsed (e) and staggered (s) conformation combinations

κ-(BEDT-TTF)₂Cu(NCS)₂

N. Rademacher

SS

ee

ee'

es

se

Hier wird Wissen Wirklichkeit

κ-(BEDT-TTF)₂Cu(NCS)₂ Conclusion:

- challenge: first peak in G(r) at r ~ 1.4Å
- first organic PDF, f(7) at ID15B
- features expected at higher r
- <u>quantitative</u> analysis has to follow!

Na-p-chlorosulfonate

single crystal structure analysis: 50:50 disorder of *\phi*-rings in *Pnma*

Na-p-chlorosulfonate

´P 2₁/c 1 1

P 1

M.U. Schmidt, A. Wolf

3 ordered variants Possible in *P*2₁/*b, P*2₁/*c or P*1

H.B. Bürgi

P 21/b 1 1

UNIVERSITÄT FRANKFURT AM MAIN

Na-p-chlorosulfonate

Hier wird Wissen Wirklichkeit

Na-p-chlorosulfonate

refinements

models	E [kJ/mol]	R [%] (PDFfit)		
		<i>r</i> = 3-13 Å		
P nma	-	(62.1)		
<i>P</i> 2 ₁ / <i>b</i> 11	-582,720	54.0		
$P2_{1}/c11$	-582,855	54.6		
P1	-582,785	54.6		

UNIVERSITÄT FRANKFURT AM MAIN

Na-p-chlorosulfonate

refinements

models	<i>E</i> [kJ/mol]	R [%] (PDFfit)		
		<i>r</i> - 3 -13 Å		
P nma	-	(6 <u>2.</u> 1)		
<i>P</i> 2 ₁ / <i>b</i> 11	-582,720	54.0		
P 2 ₁ /c 11	-582,855	(54.6)		
<i>P</i> 1	-582,785	 \ 54.6 /		

Na-p-chlorosulfonate

refinements

models	<i>E</i> [kJ/mol]	<i>R</i> [%] (PDFfit)		
		<i>r =</i> 3-13 Å	<i>r</i> = 3-23 Å	<i>r</i> = 3-33 Å
P nma	-	(62.1)	50.9	52.9
P 2 ₁ /b 11	-582,720	54.0	54.0	52.6
P21/c11	-582,855	(54.6)	50.9	52.3
P 1	-582,785	∖ 54.6 /	47.4	52.6

Na-*p*-chlorosulfonate Conclusion:

- PDF proves order for *r* < 13Å from diffraction data
- none of the models is favoured energtically
- \Rightarrow statistical disorder
- orthorhombic symmetry is mocked

Pigment Yellow 213

polymorphism: 2 phases

 α -phase: yellow, β -phase: red

M.U. Schmidt

UNIVERSITÄT FRANKFURT AM MAIN

Pigment Yellow 213

"nice" and "bad" powder diffractograms

Pigment Yellow 213

UNIVERSITÄT

Pigment Yellow 213

α

Hier wird Wissen Wirklichkeit

Pigment Yellow 213

Pigment Yellow 213 Conclusion:

- for r < 5 Å one can "see" the molecule
- the β-phase looses correlation about r > 40 Å (it is a "nano-material" !)
- in α and β we see the inter-layer distance of ~ 3.6 Å

quantitative analysis has to follow!

pharmaceuticals

UNIVERSITÄT FRANKFURT AM MAIN

two main issues

- Polymorphism
- Amorphous formulations

can PDF help?

Polymorphism - Hydrate/Anhydride

Sometimes, solvates are subsumed with the term "polymorphism".

Is there local resemblence in hydrates/anhydirides ???

with or without H₂O

Sutor, Acta Cryst. 11 (1958) 83

UNIVERSITÄT FRANKFURT AM MAIN

Theophylline

UNIVERSITÄT FRANKFURT AM MAIN

K. Nollenberger, J. Dressman, M.U. Schmidt,

a Ca-antagonist with low water solubility

 $\begin{array}{l} \mathsf{X} = 2 \ \mathsf{CI} \ (o \ \mathsf{and} \ m) \\ \mathsf{R} = \mathsf{C}_2\mathsf{H}_5 \\ \mathsf{R'} = \mathsf{CH}_3 \end{array}$

K. Nollenberger, J. Dressman, M.U. Schmidt,

a Ca-antagonist with low water solubility

to enhance solubility: co-extrudate with polymers¹⁾!

or polymer mixtures...

¹⁾Eudragit[®]: methacrylate copolymers (degussa Röhm)

Eudragit(R) E vs. felodipine vs. their extrudate

GOETHE

JOHANN WOLFGANG

UNIVERSITÄT FRANKFURT AM MAIN

Felodipine Conclusion:

- when spectroscopy results are limited, PDF will help
- in this case, Cu K α_1 data do well
- for the fist time, PDF has been applied successfully to understand a pharma melt extrusion problem

Nollenberger et al., J. Pharm. Sci. (2007) in preparation

UNIVERSITÄT FRANKFURT AM MAIN

before I finish...

What is needed most ?

to do proper refinements in the future...

Refinement constraints

rotation about χ , ϕ and θ

$$= \begin{pmatrix} m_x \\ m_y \\ m_z \end{pmatrix} + \begin{pmatrix} \frac{1}{a} & 0 & -\frac{\cot\beta}{a} \\ 0 & \frac{1}{b} & 0 \\ 0 & 0 & \frac{1}{c\sqrt{1-\cos^2\beta}} \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\phi & 0 & \sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & \cos\phi \end{pmatrix} \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\chi & -\sin\chi \\ 0 & \sin\chi & \cos\chi \end{pmatrix} \begin{pmatrix} d_{ix} \\ d_{iy} \\ d_{iz} \end{pmatrix}$$

plus internal degrees of freedom ... !

Conclusion

it is all the same – but: molecular solids, they are different!

it is all the same – but: molecular solids, they are different!

challenging in terms of low *r* peaks
qualitatively promising
interesting applications
but quantitative tools are needed !

Thank U

to all those names mentioned...

in the order of appearence... **Guido Kreiner** Jürgen Glinnemann **Christian Strack Michael Lang Anja Wolter Stefan Süllow G.G.** Aviles V. Honkimäki **Nadine Rademacher** Martin U. Schmidt **Alexandra Wolf** Hans-Beat Bürgi **Kathrin Nollenberger Jennifer Dressman**

(maybe someone else...)

... and the audience !