Structure Refinement of Neutron and X-ray Diffraction Data on Glassy Systems for Liquid and Glassy Systems

Daniel T. Bowron

ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom

Outline

- (1)Brief summary of diffraction experiments
- (2)Neutrons and X-rays and the structure of silica glass.
- (3)Checking the model EXAFS and a partial structure view.
- (4)The structure of a aqueous electrolyte solution
- (5)Fine tuning an atomic potential
- (6)From local structure to the mesoscale
- (7)Conclusions: New possibilities for the structure refinement of
 - disordered systems

Schematic of a neutron or X-ray scattering experiment

The neutron diffraction experiment

Total Structure Factor Atomic concentrations and scattering lengths $F(Q) = \sum_{\alpha\beta} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} S_{\alpha\beta}(Q)$

Partial Structure Factors

$$S_{\alpha\beta}(Q) - 1 = 4\pi\rho \int_{0}^{\infty} r^{2} [g_{\alpha\beta}(r) - 1] \frac{\sin(Qr)}{Qr} dr$$

Atomic density Partial Pair Distribution Functions

The X-ray diffraction experiment

$$S_{\alpha\beta}(Q) - 1 = 4\pi\rho_e \int_{0}^{\infty} r^2 [g_{\alpha\beta}(r) - 1] \frac{\sin(Qr)}{Qr} dr$$

Electronic density Partial Pair Distribution Functions

The structure of silica glass: an under-determined problem

 $F_{SiO_2}(Q) = c_{Si}^2 b_{Si}^2 \left[S_{SiSi}(Q) - 1 \right] + 2c_{Si} c_O b_{Si} b_O \left[S_{SiO}(Q) - 1 \right] + c_O^2 b_O^2 \left[S_{OO}(Q) - 1 \right]$

By neutrons: No isotopic variation in scattering length of silicon or oxygen By X-rays: Silicon and oxygen absorption edges at too low an energy to make feasible anomalous X-ray scattering techniques

By neutrons and X-rays

 $F_{SiO_2}(Q) = c_{Si}^2 f_{Si}^2(Q) [S_{SiSi}(Q) - 1] + 2c_{Si}c_O f_{Si}(Q) f_O(Q) [S_{SiO}(Q) - 1] + c_O^2 f_O^2(Q) [S_{OO}(Q) - 1]$

The measured structure factors for silica

Neutron

X-ray

The neutron and X-ray total radial distribution functions for silica

Neutron

X-ray

Empirical Potential Structure Refinement

A.K.Soper Chem Phys 202 p.295 (1996)

Silica simulation box

1000 Si atoms 2000 O atoms

Box side: 35.62Å

Density: 0.0664 ats/Å³

EPSR model fits to the neutron and X-ray data for silica

EXAFS measurements: One route to partial structure information

X-ray Absorption Spectroscopy

EXAFS

The Gaussian shell model for EXAFS analysis

$$\chi(k) = \sum_{j} \frac{N_{j}}{kR_{j}^{2}} e^{2R_{j}/\lambda_{j}(k)} |f_{j}(k,\pi)| \sin(2kR_{j} + 2\delta_{l}(k) + \phi_{j}(k)) e^{-2\sigma_{j}^{2}k^{2}}$$

Convenient for peak fitting analysis based on a (significant) number of free parameters

$$\begin{split} &R_{j} = \text{Distance of photo-absorber to shell } j \\ &N_{j} = \text{Number of atoms in shell } j \\ &exp(-2\sigma^{2}{}_{j}k^{2}) = \text{Debye-Waller disorder for shell } j \\ &|f_{j}(k,\pi)| = \text{Backscattering amplitude of shell } j \\ &\varphi_{j}(k) = \text{Backscattering phase function of shell } j \\ &\delta_{l}{}^{'}(k) = \text{Photo-absorber phase function} \\ &\lambda_{j} = \text{Mean-free path term for inelastic losses} \end{split}$$

Works well for crystalline solids and well defined molecular structures

Breakdown of the EXAFS shell model

Liquids and disordered materials are best characterised by the radial distribution function g(r)

Breakdown of the EXAFS shell model

Liquids and disordered materials are best characterised by the radial distribution function g(r)

Breakdown of the EXAFS shell model

Liquids and disordered materials are best characterised by the radial distribution function g(r)

Reformulation of the EXAFS equation as a configurational average

$$\chi(k) = \sum_{i} \gamma^{(2)}(0,i)$$

 $\gamma^{(2)}$ is the EXAFS signal associated with a single neighbour atom at a distance r from the photo-absorber.

$$\langle \chi(k) \rangle = \int_{0}^{\infty} dr 4\pi r^{2} \rho g(r) \gamma^{(2)}(r,k)$$

 $\langle \chi(k) \rangle$ is the ensemble average of the pair-wise atomic configurations characterised by the radial pair distribution function, g(r), centred on the photo-absorber. This function intrinsically incorporates the static and dynamic disorder in the local environment.

A.Filipponi, J. Phys. Condens. Matter, 13, R23 (2001)

Reformulation of the EXAFS equation

$$\langle \chi(k) \rangle = \int_{0}^{\infty} dr 4\pi r^{2} \rho g(r) \gamma^{(2)}(r,k)$$

 $\gamma^{(2)}$ contains the chemically specific phase and backscattering amplitude information

$$\gamma^{(2)}(r,k) = A(k,r)\sin(2kr + \phi(k,r))$$

Atom, energy and distance dependent loss term

Backscattering amplitude

$$A(k,r) = \frac{f(k,r)}{kr^2} \exp(-r/\lambda(k,r))$$

A.Filipponi, J. Phys. Condens. Matter, 6, 8415 (1994)

Complementarity between Diffraction and EXAFS

A diffraction experiment probes the pair correlation function g(r):

$$S(Q) = 1 + \frac{4\pi\rho}{Q} \int_{0}^{\infty} (g_{2}(r) - 1)r \sin(Qr) dr$$

For a fixed atom configuration around a photoabsorber, the EXAFS can be written as:

$$\chi(k) = \sum_{i} \gamma^{(2)}(0,i) + \sum_{i,j} \gamma^{(3)}(0,i,j) + \dots$$

To apply this to a real system we need to ensemble average to include structural and dynamic disorder. This is achieved through the inclusion of the pair and higher order correlation functions:

$$\left\langle \chi(k) \right\rangle = \int_{0}^{\infty} dr 4\pi r^{2} \rho g(r) \gamma^{(2)}(r,k) + \int dr_{1} dr_{2} d\phi 8\pi^{2} r_{1}^{2} r_{2}^{2} \sin(\phi) \rho^{2} g_{3}(r_{1},r_{2},\phi) \gamma^{(3)}(r_{1},r_{2},\phi,k)$$

A.Filipponi, J. Phys. Condens. Matter, 13, R23 (2001)

EXAFS from an EPSR model

Step 1: select a photoabsorbing atom within the simulation box and place at origin

Step 2: identify neighbouring atom coordinates within a radius of 6Å (cluster for potential, phase shift and scattering path calculations)
Step 3: Calculate theoretical EXAFS signal using no Debye-waller broadening (e.g. FEFF 8) and all significant paths
Step 4: repeat for all photoabsorbing

atoms in the box, and average signals

EXAFS from an EPSR model

Step 1: select a photoabsorbing atom within the simulation box and place at origin

Step 2: identify neighbouring atom coordinates within a radius of 6Å (cluster for potential, phase shift and scattering path calculations)
Step 3: Calculate theoretical EXAFS signal using no Debye-waller broadening (e.g. FEFF 8) and all significant paths
Step 4: repeat for all photoabsorbing

atoms in the box, and average signals

EXAFS from an EPSR model

Step 1: select a photoabsorbing atom within the simulation box and place at origin **Step 2:** identify neighbouring atom coordinates within a radius of 6Å (cluster for potential, phase shift and scattering path calculations) **Step 3:** Calculate theoretical EXAFS signal using no Debye-waller broadening (e.g. FEFF 8) and all significant paths **Step 4:** repeat for all photoabsorbing atoms in the box, and average signals

Si and O K-edge EXAFS calculated from EPSR refinement of SiO₂ glass

EPSR derived partial pair distribution functions

Silicon-silicon pair distribution function

Silicon-oxygen pair distribution function

Si-O 1.60Å

Oxygen-oxygen pair distribution function

O-O 2.61Å

Intermediate Range Order in Pure Silica Glass from Faber-Ziman to Bhatia-Thornton Structure Factors

 $F_{SiO_2}(Q) = c_{Si}^2 b_{Si}^2 [S_{SiSi}(Q) - 1] + 2c_{Si} c_O b_{Si} b_O [S_{SiO}(Q) - 1] + c_O^2 b_O^2 [S_{OO}(Q) - 1]$

 $S_{NN}(Q)$ reflects correlations between atomic sites irregardless of chemical species $S_{cc}(Q)$ reflects correlations between chemical species and

 $S_{Nc}(Q)$ represents the cross correlations between number density and chemical species

$$S_{NN}(Q) = c_{Si}^{2} S_{SiSi}(Q) + c_{O}^{2} S_{OO}(Q) + 2c_{Si}c_{O}S_{SiO}(Q)$$

$$S_{Nc}(Q) = c_{Si}c_{O}[c_{Si}(S_{SiSi}(Q) - S_{SiO}(Q)) - c_{O}(S_{OO}(Q) - S_{SiO}(Q))]$$

$$S_{cc}(Q) = c_{Si}c_{O}[1 + c_{Si}c_{O}(S_{SiSi}(Q) + S_{OO}(Q) - 2S_{SiO}(Q))]$$

A.B.Bhatia and D.E.Thornton, Phys. Rev. B 2, 3004, (1970)

Intermediate range order correlates with fluctuations *general* atomic density i.e. it is not correlated with a specific chemical component (Si or O)

Bulk solution structure of 1m YCl₃ in water

Correlation	Neutron Weights D_2O solution	Rel. Weight %
Y-Y	0.00002	0.004
Y-Cl	0.00015	0.036
Y-OW	0.00170	0.412
Y-HW	0.00392	0.951
Cl-Cl	0.00028	0.068
Cl-OW	0.00633	1.536
Cl-HW	0.01453	3.524
OW-OW	0.03547	8.603
OW-HW	0.16289	39.510
HW-HW	0.18699	45.355

H/D substitution to probe the solvent structure

D.T.Bowron and S.Diaz-Moreno, J.Phys.Chem B 111, 11393 (2007)

EPSR derived pair distribution functions for pure water and water in a 1m YCl₃ in water

	Range Å	Pure Water	1m YCl ₃ solution
OW-OW	2.3 - 3.3	4.3 ± 0.1	4.5 ± 0.1
OW-HW	1.4 - 2.5	2.0 ± 0.1	1.7 ± 0.1
HW-HW	1.5 - 3.0	5.6 ± 0.1	5.2 ± 0.1

The spatial density function of water, and water in a 1m YCl₃ solution

Local structure in 1m aqueous solution of YCl₃ and refining an atomic potential

EXAFS spectroscopy to investigate the Y³⁺ local structure

Local structure in 1m aqueous solution of YCl₃ and refining an atomic potential

EXAFS spectroscopy to investigate the Y³⁺ local structure

Y³⁺-OW interaction potential used in the structure refinement

Y³⁺-OW EXAFS optimised interaction potential

Experimental data: S.Díaz-Moreno, A.Muñoz-Paez and J.Chaboy, J. Phys. Chem. A, 104 1278 (2000)

Local structure of the Y³⁺ hydration shell

Well defined second hydration shell at ≈ 4.6 Å

Ion-ion interactions in the Y³⁺ hydration shell

The model tells us that Cl⁻ anions can be found in the first hydration shell

Mesoscale structure in 0.04 mole fraction tert. butanol – water solutions

D.T.Bowron and J.L.Finney, J.Phys.Chem B 111 9838 (2007)

Alcohol-alcohol interactions

25°C

Alcohol-water interactions

25°C

80°C

Isotopes and absorption edges – routes to chemical specificity

Н																	Не
Li	Ве											В	С	Ν	Ο	F	Ne
Na	Mg											ΑΙ	Si	Р	S	СІ	Ar
к	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ва	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt									

La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Elements with isotopes that potentially can be used for NDIS ion solvation studies ($\Delta b_c \ge 1 \text{ fm}$) J.E.Enderby, *Chem. Soc. Revs.* 159 (1995)

Isotopes and absorption edges – routes to chemical specificity

Н																	Не
Li	Ве											В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Р	S	СІ	Ar
κ	Са	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ва	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ТІ	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt						-			

La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Elements with absorption edges suitable for atomic resolution Anomalous X-ray Scattering investigation of local structure in solutions

Isotopes and absorption edges – routes to chemical specificity

Н																		Не
Li	Ве												В	С	Ν	0	F	Ne
Na	Mg												AI	Si	Р	S	CI	Ar
κ	Са		Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ва		Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra		Lr	Rf	Db	Sg	Bh	Hs	Mt				-	-				

La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Elements with absorption edges suitable for EXAFS investigation of local structure in solutions

Concentration limits:

Diffraction 1 to 10 atom % Spectroscopy ~0.01 atom %

Benefits of the neutron (or X-ray) scattering plus EXAFS, EPSR analysis approach

- (1) Produces a model that is consistent with both bulk and local structural information.
- (2) Brings dilute component sensitivity of the spectroscopic probe to bulk structural models.
- (3) Circumvents the traditional limitations of direct EXAFS analysis of disordered materials data:
 - (i) No need for peak shape approximations
 - (ii) No need for Debye-Waller factor models
 - (iii) Reduces the number of free parameters in the model to 1
 - (iv) Provides an unambiguous means to incorporate higher order
 - correlation functions into a disordered materials analysis -

sensitivity to the local atomic environmental geometry

Benefits of the neutron scattering plus EXAFS, EPSR analysis approach

(4) Allows pair potential models to be investigated and refined(5) Is cheaper, more sensitive and more versatile than neutron scattering with exotic isotopic substitution methods for the investigation of ionic species

(6) Experimentally much simpler and more sensitive than Anomalous X-ray Scattering techniques

If the scattering and spectroscopy data exist, the method can be applied.

