## Recent Developments in the Inorganic Scintillator Field

C.W.E. van Eijk, M.D. Birowosuto, G. Bizarri P. Dorenbos, J.T.M. de Haas, E. van der Kolk H. Güdel, K. Krämer

IWORID 7 - Grenoble - July 4-7 - 2005



M. J. Weber

### History of scintillators

J. Lumin. 100 (2002) 35





## Many reviews:

M.J. Weber, *Inorganic scintillators: today and tomorrow* J. Lumin. 100 (2002) 35-45
C.W.E. Van Eijk, *Inorganic scintillators in medical imaging detectors* Nucl. Instr and Meth. A509 (2003) 17-25
C.W.E. Van Eijk *et al, Inorganic thermal-neutron scintillators* Nucl. Instr and Meth. A529 (2004) 260-267
C.L. Melcher, *Perspectives of the future development of new scintillators* Nucl. Instr and Meth. A537 (2005) 6-14
P. Lecoq, *Ten years of lead tungstate development*

Nucl. Instr and Meth. A537 (2005) 15-21



# **The New Scintillators**

July 6, 2005



LaCl<sub>3</sub>:Ce

energy resolution



E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel Appl. Phys. Lett. 77 (2000) 1467

**f**UDelft

5

## LaCl<sub>3</sub>:Ce scintillation decay





- LaCl<sub>3</sub>:Ce
- 3" x 3"
- 1" x 1"





courtesy Saint-Gobain Crystals & Detectors



## LaCl<sub>3</sub>:Ce Background of 1"x 1"crystals

### Technology from Ultra-Low Background Nal:Tl



courtesy Saint-Gobain Crystals & Detectors



**Inorganic Scintillators** 

## LaBr<sub>3</sub>:0.5%Ce<sup>3+</sup>

## **Energy Resolution**



E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel Appl. Phys. Lett. 79 (2001) 1573

**″u**Delft

9

## Inorganic Scintillators <sup>60</sup>Co spectrum measured with prototype Ø19x19 mm<sup>3</sup> LaBr<sub>3</sub>:0.5%Ce scintillator



July 6, 2005



## Non-Proportionality and Energy Resolution





Delft

# Inorganic Scintillators Decay Time for LaBr<sub>3</sub>:Ce & Time Resolution



July 6, 2005



| Scintillator                               | Size<br>(mm <sup>3</sup> ) | ρ<br>(g/cm³) | Z <sub>eff</sub> . | λ <sub>max.</sub><br>(nm) | N<br>(ph/MeV) | R<br>(%) | τ<br>(ns) | ref. |
|--------------------------------------------|----------------------------|--------------|--------------------|---------------------------|---------------|----------|-----------|------|
| LaBr <sub>3</sub> : 0.5% Ce                | Ø <b>3x10</b>              | 5.29         | 46.9               | 358                       | 61,000        | 2.9      | 18 (90%)  | [1]  |
| LaCl <sub>3</sub> :10% Ce                  | Ø <b>8x5</b>               | 3.86         | 49.7               | 335                       | 49,000        | 3.1      | 25 (41%)  | [2]  |
| RbGd <sub>2</sub> Br <sub>7</sub> :9.8% Ce | 15x5x1                     | 4.79         | 50.6               | 420                       | 56,000        | 4.1      | 43 (56%)  | [3]  |
| Nal:TI                                     | Ø <b>25x12.5</b>           | 3.67         | 50.8               | 415                       | 40,000        | 6.5      | 230       | [4]  |
| Csl:Tl                                     | Ø <b>3x5</b>               | 4.51         | 53.7               | 540                       | 64,800        | 4.3      | 600-800   | [5]  |
| YAIO <sub>3</sub> :Ce                      | 3x3x20                     | 5.5          | 33.6               | 350                       | 21,400        | 4.4      | 25        | [6]  |

[1] E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. W. Krämer, H.U. Güdel, Appl. Phys. Lett. <u>79</u> (10) (2001) 1573. [2] E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. W. Krämer, H.U. Güdel, Appl. Phys. Lett. <u>77</u> (10) (2000) 1467.

- [3] O. Guillot-Noël, J.C. van't Spijker, J.T.M. de Haas, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel, IEEE Trans. Nucl. Sci. <u>46</u> (5) (1999) 1274.
- [4] D.R. Kinoch, W. Novak, P. Raby, I. Toepke, IEEE Trans. Nucl. Sci. 41 (1994) 752.
- [5] C. Fiorini, F. Perotti, Nucl. Instr. Meth. A 401 (1997) 104
- [6] M. Kapsuta, M. Blacerzyk, M. Moszynski, J. Pawelke, Nucl. Instr. Meth. Phys. Res. A <u>421</u> (1999) 610.





## Ce energy levels in the gap of the host



July 6, 2005



## Lul<sub>3</sub>: Ce<sup>3+</sup>

## Gamma-ray spectroscopy with APD



Shaping time = 500 nsCrystal size =  $8 \times 6 \times 2 \text{ mm}$  Photonic 630-70-73-500 APD, HV = 1600 V T = 278 K, Crystal size =  $8 \times 6 \times 2 \text{ mm}^3$ 

| <sup>137</sup> Cs                        |                        |                      |           |  |
|------------------------------------------|------------------------|----------------------|-----------|--|
| Compound                                 | Electron<br>(10³ e-h เ | Energy<br>Resolution |           |  |
|                                          | <b>0.5</b> μs          | 10 μs                | K (%)     |  |
| LuI <sub>3</sub> : 0.5% Ce <sup>3+</sup> | 50 ± 5                 | 65 ± 6               | 3.3 ± 0.3 |  |
| LuI <sub>3</sub> : 2% Ce <sup>3+</sup>   | 58 ± 5                 | 73 ± 7               | -         |  |
| (Two photopeaks)                         | $65\pm 6$              | 82 ± 8               | -         |  |
| LuI <sub>3</sub> : 5% Ce <sup>3+</sup>   | 60 ± 6                 | 83 ± 8               | -         |  |
| (Two photopeaks)                         | 72 ± 6                 | 92 ± 9               | -         |  |

## Time Resolution better than with LaBr<sub>3</sub>:Ce

July 6, 2005



# Scintillators in Positron Emission Tomography (PET)



July 6, 2005

# **PET basics - Imaging**

## Detector ring

Detectors: Scintillator (BGO, LSO, GSO) + PMT Collinearly emitted annihilation quanta detected in coincidence





Radiopharmaceutical positron emitter

July 6, 2005



## **PET Scintillators**

|                                                    |             | ρ                    | 1/µ 511 keV | light yield   | τ    | λ    |
|----------------------------------------------------|-------------|----------------------|-------------|---------------|------|------|
|                                                    |             | (g/cm <sup>3</sup> ) | (mm)/PE (%) | (photons/MeV) | (ns) | (nm) |
| Bi <sub>4</sub> Ge <sub>3</sub> O <sub>12</sub>    | (BGO)       | 7.1                  | 11.6 / 44   | 9,000         | 300  | 480  |
| Gd <sub>2</sub> SiO <sub>5</sub> :Ce               | (GSO)       | 6.7                  | 15 / 26     | 8,000         | 60   | 440  |
| Lu <sub>2</sub> SiO <sub>5</sub> :Ce               | (LSO + LYSO | ) 7.4                | 12.3 / 34   | 26,000        | 40   | 420  |
| $Lu_xY_{1-x}AlO_3$ :                               | Ce (LuYAP)  | 8.3                  | 11.0 / 32   | 11,000        | 18   | 365  |
| Lu <sub>2</sub> Si <sub>2</sub> O <sub>7</sub> :Ce | (LPS)       | 6.2                  | 14.5 / 29   | 20,000        | 30   | 380  |

C.L. Melcher and J.S. Schweitzer, IEEE Trans. Nucl. Sci. 39(1992) 502

B.I. Minkov, Functional Materials 1(1994)103, W.W. Moses et al IEEE Trans. Nucl. Sci. 42((1995)275, A. Lempicki et al IEEE Trans. Nucl. Sci. 42((1995)280

D. Pauwels et al Proc. SCINT 99, Moscow 2000, 511

## Energy resolution poor



## Lu<sub>2</sub>SiO<sub>5</sub>:Ce

# Lu<sub>2(1-x)</sub>Y<sub>2x</sub>SiO<sub>5</sub>:Ce Less Afterglow



July 6, 2005







attenuation coefficients of a number of inorganic scintillators





## **PET Detector Block**



BGO detector block 8 x 8 columns of 6 x 6 x 30 mm<sup>3</sup>

July 6, 2005



## Spatial Resolution -Depth-of-interaction

DOI

Depth-of-interaction (DOI) information is needed to maintain good resolution at off-centre positions incorrect LOR

∕∕ **TU**Delft







July 6, 2005

PET

HRRT



23

200

## **PET - depth of interaction - DOI**



July 6, 2005



## **ClearPET**®





# Inorganic Scintillators Monolithic scintillation detectors





- Monolithic crystal block LSO
- One or two APD arrays
- 3D interaction position derived from light distribution on APDs

#### July 6, 2005

Delft



# Inorganic Scintillators Monolithic scintillation detectors



GEANT4 Monte Carlo simulation of an LSO block read out by two APD arrays. A small fraction of the optical photons produced by the absorption of a 511 keV annihilation photon is shown.

July 6, 2005



## **Spatial Resolution**

## Experimental data

- 20x10x10 mm<sup>3</sup> LYSO, polished, back side readout.
- Same number of events per position in both the training and the test set, for all LLD settings (1000 in each set).
- LLD on test data causes some improvement, especially in FWTM
- LLD on training data causes only limited improvement

| Training<br>set | Test<br>set | Spatial<br>Resolution<br>(FWHM mm) | Spatial<br>Resolution<br>(FWTM mm) |
|-----------------|-------------|------------------------------------|------------------------------------|
| All E           | All E       | 2.19                               | 5.27                               |
| >250 keV        | All E       | 2.20                               | 5.27                               |
| >350 keV        | All E       | 2.20                               | 5.37                               |
| >415 keV        | All E       | 2.15                               | 5.25                               |
| Training<br>set | Test<br>set | Spatial<br>Resolution<br>(FWHM mm) | Spatial<br>Resolution<br>(FWTM mm) |
| all E           | All E       | 2.19                               | 5.27                               |
| all E           | >250 keV    | 2.14                               | 4.87                               |
| all E           | >350 keV    | 2.13                               | 4.81                               |
| all E           | >415 keV    | 2.13                               | 4.67                               |
| Training<br>set | Test<br>set | Spatial<br>Resolution<br>(FWHM mm) | Spatial<br>Resolution<br>(FWTM mm) |
| All E           | All E       | 2.19                               | 5.27                               |
| >250 keV        | >250 keV    | 2.12                               | 4.82                               |
| >350 keV        | >350 keV    | 2.08                               | 4.81                               |
| >415 keV        | >415 keV    | 2.08                               | 4.81                               |



## **Small animal PET**

GEANT4 simulation of a scanner with dead space between the scintillator pixels and between the detector modules. Note the "leakage" of radiation, reducing the overall detection efficiency.





Efficiency gain > 2

Delft

30

SCINT + APD integration of

PET + MRI ?

Blood flow changes under speech activation (red) Tumor (green)



courtesy Klaus Wienhard, MPI für Neurologische Forschung, Köln





## LaBr<sub>3</sub>:Ce and PET

Random coincidences  $\sim N^2_{singles} T$ 

# 5000 4000 3000 2000

Energy Resolution & Time Resolution

TOF

July 6, 2005

0

Coincidence

200

300

400

500

Energy (keV)

600

700

800

900

Mode

100

Counts

1000



# **Energy resolution**

## LaBr<sub>3</sub>: 0.5% Ce<sup>3+</sup>

✓ Dimension, Ø 3mm x 10mm
✓ Observed resolution, R = 2.9%
✓ Scintillator resolution, R<sub>s</sub> = 1.5%



# Time resolution 300 ps - TOF 4.5 cm

July 6, 2005



## Full Module 1620 (60x27) 4mm x 4mm x 30mm LaBr<sub>3</sub>:Ce crystals Raw Signals



courtesy Philips Research Laboratories

July 6, 2005







courtesy Philips Research Laboratories

## PSAPD-LaBr<sub>3</sub>:Ce Gamma Ray Imaging Module



## 8x8 element LaBr<sub>3</sub> Array (2x2x5 mm pixels)



## 28 x 28 mm<sup>2</sup> PSAPD

Courtesy Kanai Shah, RMD







Mars



Asteroid



**Inorganic Scintillators** 

## Space Research - Planetology

1. <u>Surface composition</u> provides information on the planet bulk composition. Bulk composition helps to understand where and how the planet forms.

#### → Solar System / Planets Origin

<u>Surface composition</u> provides information about how a planet has evolved since its formation.

### → Solar System / Planets Evolution

- <u>Comparative studies</u> helps us to understand how planets differ from each other.
  - → Comparative Planetology

## **Remote sensing & ground truth**



July 6, 2005



37

Courtesy Alan Owens, ESTEC



July 6, 2005

38

Courtesy Alan Owens, ESTEC

**f**UDelft

**BepiColombo** - An interdisciplinary mission to the planet Mercury



July 6, 2005



39

Courtesy Alan Owens, ESTEC

Simulated in orbit spectra measured by a  $6.5 \text{ cm} \times 6.5 \text{ cm}$  diameter Ge crystal and an 8 cm diameter LaBr detector.



July 6, 2005



40

ESA, Saint-Gobain, TUD and Cosine

## Board with scintillators will orbit the earth in ISS for 1 - 2 years Test on radiation damage



July 6, 2005



41

ESA, Saint-Gobain, TUD and Cosine

# Scintillators for Thermal Neutron Detection



Inorganic thermal – neutron scintillators

## Thermal neutron detection

reaction  ${}^{6}\text{Li} + n \rightarrow {}^{3}\text{T} + {}^{4}\text{He}$ kinetic energy 4.8 MeV

in scintillator

charged particle response < electron (gamma) response

" $\alpha/\beta$  ratio" < 1





## <sup>6</sup>Li based thermal-neutron scintillators

| Host Dopant<br>(concmol%)                                              |                        | Light<br>photo                                      | yield<br>ons per                     | α/β<br>ratio                | τ<br>ns                           |                             |                |
|------------------------------------------------------------------------|------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------|-----------------------------------|-----------------------------|----------------|
|                                                                        |                        | neutron                                             | MeV<br>gamma                         |                             |                                   | at 1.8Å<br>mm               |                |
| 6Li-glass<br>6LiI<br>6LiF/ZnS<br>6Li <sub>6</sub> Gd(BQ <sub>3</sub> ) | Ce<br>Eu<br>Ag<br>3 Ce | ~ <mark>6,000</mark><br>50,000<br>160,000<br>40,000 | ~4,000<br>12,000<br>75,000<br>25,000 | 0.3<br>0.87<br>0.44<br>0.59 | 75<br>1,400<br>> 1,000<br>200/800 | 0.52<br>0.54<br>0.8<br>0.35 | hygr<br>opaque |

Inorganic thermal-neutron scintillators C.W.E. van Eijk, A. Bessière, P. Dorenbos Nucl. Instr. Meth. A **529**(2004)260-267



44

### Inorganic thermal – neutron scintillators



Luminescence and scintillation properties of Cs<sub>2</sub>LiYCl<sub>6</sub>: Ce<sup>3+</sup> for  $\gamma$  and neutron detection New Thermal Neutron Scintillators: Cs<sub>2</sub>LiYCl<sub>6</sub>: Ce<sup>3+</sup> and Cs<sub>2</sub>LiYBr<sub>6</sub>: Ce<sup>3+</sup> A. Bessière, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel Nucl. Instr. Meth. A 537 (2004) 242-246

A. Bessière, P. Dorenbos, C.W.E. van Èijk, K.W. Krämer, H.U. Güdel IEEE Trans Nucl Sci 51-5 (2004) October



## Inorganic thermal-neutron scintillators

| host                                                                                                             | Ce conc.<br>(mol%)       | grain size<br>(mm <sup>3</sup> ) ( | ρ<br>(g/cm <sup>3</sup> )  | ρ Ζ <sub>eff</sub> <sup>4</sup><br>x 10 <sup>-6</sup> | neut. abs. length<br>at 1.8 Å<br>95% <sup>6</sup> Li enriched<br>(mm) | abs. in<br><sup>6</sup> Li<br>(%) |
|------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------|----------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|
| Cs <sub>2</sub> LiYCl <sub>6</sub><br>Cs <sub>2</sub> LiLaCl <sub>6</sub><br>Cs <sub>2</sub> LiLuCl <sub>6</sub> | 0.1<br>1                 |                                    | 3.3                        |                                                       | 2.5                                                                   | 78<br>77<br>73                    |
| Cs <sub>2</sub> LiYBr <sub>6</sub>                                                                               | 0.3<br>1<br>3            |                                    | 4.14                       |                                                       | 3.4                                                                   | 90                                |
| $\begin{array}{c} Cs_2 LiYI_6\\ Cs_2 LiLuI_6\\ Rb_2 LiYBr_6\\ Rb_2 LiYI_6 \end{array}$                           | 0.5<br>0.5<br>0.5<br>0.5 | ~2.5 x 2.5 x 2.5                   | 4.36<br>4.76<br>3.8<br>4.0 |                                                       | 3.5                                                                   | 90<br>84<br>95<br>96              |

July 6, 2005



## Inorganic thermal-neutron scintillators



## Different light yields!

r **T**UDelft

47

### Inorganic thermal-neutron scintillators



July 6, 2005



|                                     | Ce conc<br>(mol%) | em.wavel<br>(nm) | γ-ray LY<br>(ph/MeV) | decay<br>(ns)                  | FWHM (%)<br>at 662 keV | neutron LY<br>(ph/n) | decay<br>(ns)           | α/β  |
|-------------------------------------|-------------------|------------------|----------------------|--------------------------------|------------------------|----------------------|-------------------------|------|
|                                     |                   |                  |                      |                                |                        |                      |                         |      |
| Cs <sub>2</sub> LiYCl <sub>6</sub>  | 0.1               | 380<br>255-470   | 18,000<br>700        | ~10 <sup>3</sup><br>3 (CVL)    | 9                      | 56,000<br>-          | ~10 <sup>3</sup><br>-   | 0.66 |
| Cs <sub>2</sub> LiLaCl <sub>6</sub> | 1                 | 375,410          | 28,000               | 115, ~10 <sup>3</sup>          | 20                     |                      |                         |      |
| Cs <sub>2</sub> LiLuCl <sub>6</sub> |                   |                  |                      |                                |                        |                      |                         |      |
| Cs <sub>2</sub> LiYBr <sub>6</sub>  | 0.3               | 389,423          | 20,000               | ~70, 1.5x10 <sup>3</sup>       | 4.6                    | 73,000 ~8            | 33, 1.5x10 <sup>3</sup> | 0.76 |
|                                     | 1                 |                  | 18,000               | <b>89, 2.5x10</b> <sup>3</sup> | 8                      | 67,000               |                         | 0.77 |
|                                     | 3                 |                  | 14,000               |                                | 15                     | 64,000               |                         | 0.9  |
| Cs <sub>2</sub> LiYI <sub>6</sub>   | 0.5               | bad sample       |                      |                                |                        |                      |                         |      |
| Cs <sub>2</sub> LiLuI <sub>6</sub>  | 0.5               | bad sample       |                      |                                |                        |                      |                         |      |
| Rb <sub>2</sub> LiYBr <sub>6</sub>  | 0.5               | 390,420          | 18,000               | 130(30), 1.7x10                | ) <sup>3</sup> 5       | 65,000               |                         | 0.75 |
| Rb <sub>2</sub> LiYI <sub>6</sub>   | 0.5               | 425,475          | 7,000                | 80, 355                        |                        | 26,000               |                         | ~0.8 |





