Tracking cosmics: Recent results from a Micromegas-covered MediPix2 pixel CMOS readout circuit in a mini-TPC

event 280.dat

65536

Entries

Pixel number

Contents

- Introduction
- Gridpix
 - Setup & Goals
 - Results
- Aging
 - Setup & Goals
 - Results
- InGrid

Principles of TPCs

Time Projection Chamber (TPC): 2D/3D Drift Chamber

The Ultimate Wire (drift) Chamber

Sipho van der Putten

6/1/05

TPC vs GEM & Micromegas

Wires: measure charge distribution over cathode pads: center of gravity is a good measure for track position GEMs or Micromegas: narrow charge distribution (only electron movement)

Narrow charge distribution: Lose precision

Solutions:

- Cover pads with resistive layer
 <u>"Chevron pads"</u>
- Many small pads: pixels → GRIDPIX

Sipho van der Putten

6/1/05

Gridpix

Gridpix: A TPC using a micromegas with a CMOS pixel detector (Bare medipix2)

Micromegas:

- Cu mesh (5 μ m thick)
- Hole: $35 \mu m^2$ Pitch: $60 \mu m$

Sipho van der Putten

- Medipix2:
 - 256x256 pixels
 - 55x55 μm pixels

6/1/05

Electron collection & Setup

- 1 Clusters (depends on gas mixture)
- 2 Drifting
- **3** Amplification
- **4** Collection on pixel

Front end electronics all on chip

Sipho van der Putten

8

Gridpix

Points of interest

- Gas gain; single electron efficiency
- Aging
- MIPS (Atmospheric Muons):
 - Trigger
 - Diffusion
 - dE/dx
 - Tracking resolution

Cosmics

- Triggered Images
- Projections MIPS $3D \rightarrow 2D$
- Ar/C_4H_{10} 95/5
- Gain ~ 10 000
- Predicted efficiency: 90% (s.e.)

100

150

6/1/05

250

200

Pixel number

Aging test

- Effects of high radiation environment on GridPix project
 - Rate
 - Current
 - Deposit

Method: Same as GridPix, but with polished Al plate as anode instead of MediPix

Rate effects

Anode current (gas gain) due to 55 Fe quanta calibrated with gas gain G and X-ray intensity N_x :

$$I_{anode} = G \cdot N_x \cdot 220 e^- \cdot q_e$$

Irradiation with X-ray tube: No deviation from current proportionality was observed up to <u>44 MHz of 8 keV X-ray</u> <u>quanta</u> on a detector surface of 100 mm².

Aging test

Half the GridPix was irradiated with 8 keV X-rays. Gas: Ar/Methane 90/10 After <u>0.3 Coulomb/mm²</u>, deposit of carbon polymer on anode is clearly visible

Reduced aging of a GridPix detector versus wire chambers:

- ratio of anode surface: thin wire surface versus anode plane ($\sim 20x$)
- low gas gain due to fast signal and low source capacity (~20x)

Aging: - no issue for ILC-TPC

- application as GOSSIP vertex detector in Super LHC seems feasible Sipho van der Putten 6/1/05

InGrid

 Goal: "medipix-micromegas combination in an integrated form using wafer scale post-processing"

Suspended metal grid on insulating supporting structures

Sipho van der Putten

Work in progress!!

Summary

- Triggered acquisition of cosmic rays can be obtained & analysis in progress
- Aging compared to wire chambers:
 - ~20x less charge collected per unit area
 - Gain needed ~20x less than wire chambers
 - Application SLHC/ILC feasible
- Work in progress on the InGrid project

Thanks to!

- Univ. Twente/MESA+
 - A Aarts
 - C Salm
 - J Schmitz
 - S Smits
- Saclay
 - P Colas
 - A Giganon
- NIKHEF
 - M Chefdeville
 - A Fornaini
 - W Gotink
 - J Rövekamp
 - J Timmermans
 - J Visschers
- Panalytical
 - R der Kinderen
- MediPix Consortium