Active matrix back planes for the control of large area X-ray imagers

D. Pribat and C. Cojocaru

Laboratoire de Physique des Interfaces et des Couches Minces Ecole Polytechnique 91128, Palaiseau, France

Outlook

- Introduction / General considerations
- Amorphous silicon flat panel imaging technology
- Need for pixel electronics. Limitations of a-Si
- Alternative large areas technologies
 - Polysilicon
 - Nanowires
- Summary and conclusion

Solid state X-ray imagers

- c-Si based detectors
 - Linear arrays
 - Diodes
 - Microstrips
 - Two dimensional detectors
 - CCD: max surface ~ 8x10 cm² (eg., CCD595, Fairchild Imaging)
 - CMOS: max surface ~ 17x22 cm² (C7830-01, Hamamatsu)

Wafer Scale Integration \Rightarrow Yield?

a-Si:H based detectors

Active matrix flat panel X-ray imaging system

The two detection schemes

Top view micrographs of individual pixels

General organisation of an active matrix detector

Why a-Si:H?

- a-Si:H TFTs represent a very mature technology
 - Used in AMLCDs (revenue of 48.5 G\$ in 2004)
 - 5 to 4 mask process for the active matrix
 - Processed on 1.870x2.200 m² mother plates (gen. 7)
 Highly rad hard
- a-Si:H p-i-n photodiodes (indirect detection)
 Well matched with CsI:TI (~ 550nm)
 - Sub- μ s response time \Rightarrow dynamic applications
 - Low dark current \Rightarrow low exposure level

Advanced TFT process: down to 4 masks

Why a-Si:H?

- a-Si:H TFTs represent a very mature technology
 Used in AMLCDs (revenue of 48.5 G\$ in 2004)
 - 5 to 4 mask process for the active matrix
 - Processed on 1.870x2.200 m² mother plates (gen. 7)
 Highly rad. hard
- a-Si:H p-i-n photodiodes (indirect detection)
 Well matched with CsI:TI (~ 550nm)
 - Sub- μ s response time \Rightarrow dynamic applications
 - Low dark current \Rightarrow low exposure level

Evolution of PECVD systems (TFT stack deposition)

AKT-3500 PECVD (Gen 3)

AKT-40K PECVD (Gen 7)

Gen 2 Gen 3/3.5 Gen 4 AKT-1600 AKT-3500/4300 AKT-5500 2/93 4/95, 2/97 1/00

Gen 5 AKT-10K/15K 8/01, 6/02

From AKT

Gen 6 AKT-25K/25KA 5/03

Gen 7 AKT-40K/40KA 7/04, 05

AGLE .

Recent evolution of LCD panel prices

From Display Search

Street price of 15" TFT-LCD displays

Why a-Si:H?

- a-Si:H TFTs represent a very mature technology
 - Used in AMLCDs (revenue of 48.5 G\$ in 2004)
 - 5 to 4 mask process for the active matrix
 - Processed on 1.870x2.200 m² mother plates (gen. 7)
 - Highly rad. hard
- a-Si:H p-i-n photodiodes (indirect detection)
 - Well matched with CsI:TI (~ 550nm)
 - Sub- μ s response time \Rightarrow dynamic applications
 - Low dark current \Rightarrow low exposure level

Some requirements for medical imaging

	Radiography	Mammography	Fluoroscopy
Imager size (cm)	35 x 43	18 x 24	25 x 25
Pixel area (µm ²)	150 x 150	50 x 50	250 x 250
Pixel count	1750 x 2150	3600 x 4800	1000 x 1000
Image readout time (s)	< 5	< 5	33 ms/frame
X-ray spectrum (kVp)	120	30	80
Exposure range (mR)	0.03 – 3	0.6 – 240	0.0001 – 0.01

Some limitations of active matrix imagers

Charge must be transferred through long data line: \Rightarrow Column capacitance limits noise performance of charge amplifiers \Rightarrow Coupling introduces pick-up noise Thermal noise in the pixel TFT: \Rightarrow (kTC_{ST})^{1/2} noise ~ 500 e-rms

Charge gain for pixel amplification (a-Si:H TFTs)

High dynamic range pixels

a-Si drawbacks for circuits

Metastability

Poor transport properties ⇒ large TFTs ⇒ parasitic effects → Small fill factor. Need for stocked on

 \Rightarrow Small fill factor. Need for stacked sensor structure

a-Si:H drawbacks for circuits

OK if low duty cycle

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

a-Si drawbacks for circuits

Metastability

Poor transport properties

- \Rightarrow Large TFTs
- \Rightarrow Parasitic effects \Rightarrow Noise increase
- \Rightarrow Small fill factor. Need for stacked sensor structure

Alternative technologies

- \rightarrow Poly-Si
- \rightarrow Si Nanowires

The various crystallisation processes for Si on glass

SCIENTIFIQUE

POLY TECHNIQUE

Crystallisation of a-Si: pulsed laser system with line beam optics

Why pulsed laser?

Poly-Si pros and cons

- High mobility TFTs ($\mu_n \sim 350 \text{ cm}^2/\text{Vs.} \mu_p \sim 150 \text{ cm}^2/\text{Vs}$)
- Low noise level TFTs (Carluccio, APL 71, 578, 1997)
- Low Vth
- Self-aligned TFTs
- BUT:
 - Complex, small process window for high quality TFTs
 - Vth dispersion (grain size uniformity)
 - Surface roughness (reliability)
 - Non stabilised technology
 - Niche applications in displays so far, although studied for 2 decades

Grain size as a function of laser energy density (1)

Grain size as a function of laser energy density (2)

Poly-Si pros and cons

- High mobility TFTs ($\mu_n \sim 350 \text{ cm}^2/\text{Vs}$. $\mu_p \sim 150 \text{ cm}^2/\text{Vs}$)
- Low noise level TFTs (Carluccio, APL 71, 578, 1997)
- Low Vth
- BUT:
 - Complex, small process window
 - Vth dispersion (grain size uniformity)
 - Surface roughness (reliability)
 - Non stabilised technology
 - Niche applications in displays so far, although studied for 2 decades

Semiconductor nanowires

- Si nanowires studied for CMOS replacement.
- However:
 - They can be grown at low to moderate T,
 - No need for refractory substrate,
 - No need for monocrystalline substrate.

Interest for displays and imagers!!

Principle of the VLS Growth method: Synthesis of NWs

POLY TECHNIQUE

VLS growth of Si µ-wire arrays

15 µm

Si NanoWire FET

ÉCOLE

Challenges with nanowires

- How to manipulate NWs?
- How to organise them?
- Controlled doping

Template synthesis and structuring of nanomaterials (NWs and CNTs)

Anodic alumina membranes: selforganisation at nanometric scale

Pore Diameter	Voltage	Temperature (°C)	Electrolyte
(nm)			
5-8	15	10	$10\% H_2SO_4$
30	40	20	3% Oxalic acid
150	130	7	10% H ₃ PO ₄
22	27	2	3 M H ₂ SO ₄
28.6			
45	40	0	0.2 M Oxalic acid
70	30-60	1	0.3 M Oxalic acid,
35	18 - 25	1	$20\% H_2SO_4$
40-50			Oxalic acid
10-15			H_2SO_4
33	40	15	0.2 M Oxalic acid
10	15		$15\% H_2SO_4$
50	45		0.3 M Oxalic acid
35	40	12	0.3 M Oxalic acid
33	25	10	1.7% H ₂ SO ₄ (0.3 M)
67	40	1	0.3 M Oxalic acid (2.7%)
267	160	3	10% H ₃ PO ₄

Template-grown nanostructures: OK for two-terminal devices

Wade & Wegrowe, Europ. Phys. J. Appl. Phys. 2005

Ex : GMR measurements on a Co/Cu nw

Template growth in lateral porous anodic Al₂O₃ films

Template growth in lateral porous anodic Al₂O₃ films

CNRS patent FR 03 11959

D. Pribat

SCIENTIFIQUE

SEM characterisations of lateral Al₂O₃ membranes

D. Pribat

CENTRE NATIONAI

SCIENTIFIQUE

A RECHERCH

TEM characterisations of lateral AI_2O_3 membranes (1)

The red bars represent 3.5 nm

TEM characterisations of lateral membranes (2)

Transistor fabrication with sequential doping

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Array with a 5-mask process (2)

Array with a 5-mask process (3)

Array with a 5-mask process (4)

Array with a 5-mask process (5)

Array with a 5-mask process (6)

Array with a 5-mask process (7)

Conclusions

- a-Si:H-based imagers present a number of advantages
 - Large size, high resolution, high image quality
 - Electronic picture handling
 - Compactness
 - Synergy with AMLCD industry (equipment, technologies...)

—

- Need for added pixel complexity
 - a-Si:H limitations
- Alternative technologies
 - Poly-Si: complex (laser), not mature. Niche applications in displays
 - Si NWs: simple, only CVD. Currently being developed

