

Planar Edgeless Silicon Detectors for the TOTEM Experiment

Elias Noschis

on behalf of the TOTEM collaboration

July, 4th 2005

Outline

• 1. The TOTEM experiment

- 1.1 Roman Pot Stations
- 1.2 Roman Pot Detectors
- 1.3 Requirements on the "edgeless" tracking detectors

• 2. Basic Principle of Planar Edgeless Detectors

- 2.1 Basic principle of planar 3D detectors
- 2.2 Small size detector test setup
- 2.3 Small size detector performance
- 2.4 Radiation Tests on Edgeless Planar Detectors
- 3. Basic principle of planar 3D detectors
- 4. Final size Edgeless Planar Detectors
 - 4.1 Temperature performance of the final size detectors
 - 4.2 Detector performance tests
 - 4.3 Detector response
 - 4.4 Hit distributions of reference and test detectors
 - 4.5 Track reconstruction
 - 4.6 Full size detectors test setup in coasting beam
 - 4.7 Final Size Detector Performance in coasting beams
- 5. Conclusion

1. The TOTEM experiment

In order to determine the total cross section of pp interactions with 1% uncertainty at $\sqrt{s} = 14$ TeV, the TOTEM experiment will detect leading protons scattered in angles of microradians. This is achieved using tracking detectors with a minimized insensitive edge not exceeding 50 µm inserted into Roman Pots (RP).

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

The tracking detectors must be placed as close as possible to the 10 σ envelope of the beam

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

1.3 Requirements on the "edgeless"

The detectors must fulfill the following requirements:

- Spatial resolution of 10-20 μm
- Charge collection time not exceeding 25 ns
- Radiation hardness up to 10¹⁴ "n"/cm²
- Operational temperature not below -20°C
- Inactive edge not exceeding 50 μm

Two different technologies are being considered:

- planar "edgeless" detectors
- planar "edgeless" detectors with 3D edges

This design allows full separation of surface and bulk generated current

E. Noschis

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

2.1 Small size detector test setup

Back Side

Arrangement of the detectors along the beam line

Module with detectors and readout electronics: •Test Detectors placed edge-to-edge, reference detector pitch 50 µm •APV25 chips used for read-out

The small size detectors were tested in a high energy muon beam at CERN

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

2.2 Small size detector performance

vx7

Signal-to-noise ≈18 for a detector thickness of 300µm

Detectors fully sensitive up to 60 μ m from the edge

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Studies on irradiated silicon detectors:

- No increase in the surface current with fluence (as expected)
- Bulk current increases with fluence in agreement with what is observed in standard planar detectors (damage factor $\alpha = \frac{Current}{Volume \times Fluence} = 5 \times 10^{-17} \text{ A/cm}$)

These data suggest a radiation hardness for the Edgeless Planar detectors equal to the standard planar detectors up to 10¹⁴ "n"/cm²

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

TOTEM Technical Design Report CERN-LHCC-2004-002 (2004) C.J. Kenney et al., IEEE Trans. on Nucl. Sci. 48 (2) 189 (2003)

Smaller dead area than for planar technology

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Final size edgeless detectors were produced and tested in 2004 :

- In a fixed target experiment with high energy muons
- In a coasting beam experiment with high energy protons

4.1 Temperature performance of the final size detectors

Surface current less reduced than bulk current by cooling

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

4.2 Detector performance test in fixed target experiment

Triggering: VFAT digital chip and/or scintillators
Tracking readout: APV25 analog chip

IWORID, July 4th

2 triggering planes

E. Noschis

4.3 Detector response

Faster collection time with increasing voltage, signal-to-noise ratio allows high signal selection efficiency

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

4.4 Hit distributions of reference and test detectors

E. Noschis

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

4.5 Track reconstruction

4.6 Full size detectors test setup in coasting beam

Tests of full size detectors in coasting beam:

- High energy (200 GeV) proton beam
- Beam halo particles detected for various d₁, d₂ distances
- Typical event rate of 3 kHz

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

4.7 Final Size Detector Performance in coasting beams

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

5. Conclusion

The edgeless planar detectors fulfill following criteria:

- Sensitivity up to 60 μm from the edge
- Charge collection time below 25 ns
- Radiation hardness up to fluences of 10¹⁴ "n"/cm²
- Operational temperature not below -10°C

The TOTEM Collaboration

CERN

CERN, European Laboratory for Particle Physics:

G. Anelli, V. Avati, M. Deile, E. Dimovasili, K. Eggert, F. Haug, P. Jarron, D. Macina, H. Niewiadomski¹, E. Noschis², M. Oriunno, A.-L. Perrot, E. Radermacher, L. Ropelewski, G. Ruggiero, S. Saramad, F. Sauli, W. Snoeys, A. Verdier

Czech Republic

Prague, Academy of Sciences of the Czech Republic (ASCR), Institute of Physics:

J. Kaspar, V. Kundrat, M.Lokajicek, J. Smotlacha

Finland

Helsinki, Helsinki Institute of Physics HIP and Department of Physical Sciences, University of Helsinki:

A. Aurola, E. Brücken, M. Eräluoto, J. Heino, T. Hilden, J. Kalliopuska, K. Kurvinen, R. Lauhakangas, J. Lippmaa, J. Lämsä, J. Ojala, F. Oljemark, R. Orava, K. Österberg, H. Saarikko, A. Toppinen, N. Van Remortel

Italy

Bari, INFN Sezione di Bari and Politecnico di Bari:

V. Berardi, M. Calicchio, M.G. Catanesi, E. Radicioni

Genoa, INFN Sezione di Genova and Università di Genova:

M. Bozzo, A. Buzzo, F. Capurro, S. Cuneo, F. Ferro, A. Giachero, M. Macri, S. Minutoli, A. Morelli, P. Musico, M. Negri, A. Santroni, G. Sette, L. Verardo

United Kingdom

Uxbridge, Brunel University, Electronic and Computer Engineering Dept.:

C. Da Via, J. Hasi, A. Kok, S. Watts

USA

Cleveland, OH, Case Western Reserve University, Dept. of Physics:

C. Taylor

University Park, PA, Penn State University, Dept. of Physics:

J. Whitmore

¹also at Electronic and Computer Engineering Dept., Brunel University, Uxbridge (UK) ²also at Helsinki Institute of Physics, Helsinki (Finland)

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

