Characterisation of the charge sharing in pixellated Si detectors with Single Photon **Processing Readout**

en Unive

Heinz Graafsma Vedran Vonk Cyril Ponchut

Disposition

- Measurements
 - Narrow beam centred on one pixel
 - Scanning the beam over the pixel
- Simulations
 - Physical conditions for the measurements
 - Comparison between measurements and theory
 - Study of beam size, profile and measurement accuracy
- Conclusions

Experimental setup

- Silicon detector assembly
 - 300 μm and 700 μm thick silicon detectors bonded to a MEDIPIX2 readout chip. Bias voltage is 100 V and 250 V.
 - The assembly is mounted on an X,Y translation stage
 - Readout controlled with MUROS2 and MEDISOFT4
- Beam conditions
 - Monoenergetic beam at 40 keV
 - Collimated with slits to 10 x 10 µm (extrapolated)
 - Intensity: around 65000 photons/second
- Low threshold scans with Medisoft (automatically)
 - Achieving cumulative spectra
 - Exposure time varied to get reasonable number of counts

Experimental setup

Measured cumulative spectra

 Narrow 40 keV beam centred on one pixel for 300 µm and 700 µm thick silicon detectors

Scanning the beam over the pixel

Position of narrow beam relative the centre of the pixel

Scanning the beam over the pixel - 300 μm Si

Scanning the beam over the pixel - 700 μm Si

Simulation

- MCNP for simulation of photon absorption
- In house code for Monte Carlo charge transport simulation

Backscattering

- Spectrum from MCNP
 - Backscattered photons from the bump-bonding distributed between 5 and 40 keV

Deposition of backscattering

- Absorption profiles
 - The backscattered photons are absorbed close to the bump bond

Simulation conditions

- Input to charge transport simulation (GEMS):
 - Photon spectrum
 - Distribution of positions for photon absorption
 - Readout noise 80 e
- Varied parameters are beam size and beam angle

Beam alignment

- Vertical alignment is very important for thick detectors
 - Example: 700 µm thick detector with 2.2° misalignment

Simulation result – 300 µm Si

- Simulation (lines) less position sensitive than measurements (x)
- Increased beam size gives better agreement

Simulation result – 700 µm Si

- Thicker detector
 - Needs wider beam for agreement
 - Might indicate a tilted beam

Result - 2° tilted beam on 700 µm

- Tilted beam simulated
 - Narrower beam size
 - Agreement between simulated and measured spectra improved

Result - 2° tilted beam on 300 µm

- Tilted beam for 300 µm
 - Agreement between simulated and measured spectra improved

What is agreement?

Conclusions

- Measurements to achieve position dependent spectra from a narrow monochrome source are done with Medipix2 with 300 µm and 700 µm thick silicon detectors
- Detailed characterization of measurement setup and results are achieved, by comparison between measurements and simulations
- It is shown that tilting of sample can significantly influence the apparent beam size
 - Detector alignment will be a problem for high resolution X-ray imaging systems containing thick detectors

