Optimization of the detection thresholds of singlephoton counting sensors for breast cancer screening procedures

Julien Marchal, Khalied Hussein, Lester John, Kit Vaughan

MRC\UCT Medical Imaging Research Unit, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa

Photocounting detection threshold

• High enough to discriminate signal from noise

Low enough to detect every incident primary X-ray

Problem: False counts due to charge-sharing in Pixel Detectors (worst when decreasing pixel size)

Solution: Higher detection threshold

Problem: Image noise due to scattered radiation

Solution ?: Higher detection threshold ?

0.8 06 0.4 0.2 20 30 Breast tissue 0.8 0.6 0.4 0.2 10

X-ray detector

Effect of detection threshold on system performance in mammography??

Detector performance in X-ray imaging

Fourier-based linear system analysis Statistical decision theory **Detective quantum efficiency (DQE)**:

Detector performance in broad-spectrum X-ray imaging

cf task-dependent DQE Tapiovaara and Wagner, Phys. Med. Biol. 38 (1993) Cahn et al., Med. Phys. 26 (1999)

UNIVERSITY OF CAPE TOWN

System performance in X-ray imaging

System performance in broad-spectrum X-ray imaging

DQE = 1 for an ideal X-ray image detector:

- with optimal **energy weighting** function (G(E) $\alpha \Delta \mu(E)$)
- and combined to an ideal scatter-reduction system (t=1 and SPR=0)

Ideal photocounting detector: Quantum-Noise-Limited, Quantum efficiency =1 (and Swank factor = 1)

Scatter fluence approximated by: $q_s(E) \approx SPR.q_p(E)$

Lesion detection tasks in breast cancer screening

• Mass densities: (border, density, capsule, halo and silhouette sign)

• **Calcifications:** (shape, density, distribution, definition, unilateral or bilateral, surrounding tissue or associated mass, increase in number, size):

• **Type I**: calcium oxalate dihydrate (almost always benign)

•**Type II**: calcium phosphate (related to cellular degradation and breast carcinoma)

Effect of photocounting energy threshold on DQE

Mo/Mo spectrum @ 30 kVp, microcalcification detection in a 4 cm thick, 50% glandular breast

Effect of photocounting energy threshold on DQE Mo/Mo @ various kVps, microcalcification detection in a 2,4,6,8 cm thick, 50% glandular breast

Julien Marchal – IWORID 2005

40

20 kVp

25 kVp

30 kVp

35 kVp

40 kVp

35

20 kVp

25 kVp

30 kVp

35 kVp

40 kVp

40

30

30

35

Effect of photocounting energy threshold on DQE W/AI @ various kVps, microcalcification detection in a 2,4,6,8 cm thick, 50% glandular breast

35 40 Julien Marchal – IWORID 2005

20 kVp

25 kVp

30 kVp

35 kVp

40 kVp

0

35

-0-

20 kVp

25 kVp

30 kVp

35 kVp

40 kVp

40

30

30

Figure of Merit (FOM) for breast cancer screening

 $DQE \approx \frac{SNR^2}{SNR^2_{max}}$ allows a figure of merit describing system performance to be defined as:

$$FOM = \frac{DQE(0) \times SNR^{2}_{max}}{Dg}$$

Effect of photocounting energy threshold on FOM

W/AI @ various kVps, microcalcification detection in a 2,4,6,8 cm thick, 50% glandular breast

Julien Marchal – IWORID 2005

Effect of photocounting energy threshold on FOM

W/AI @ various kVps, in a 4 cm thick, 50% glandular breast Microcalcification & tumor detection

Microcalcification detection

Tumour detection

Breast thickness = 4 cm

Conclusion & future work:

• Effect of the **detection energy threshold** on the **mammographic performance** of **photocounting** sensors can be quantified by examining:

• DQE @ 0 lp/mm : modified to include effects related to energy weighting and scattered radiation

• FOM: considering the influence of **X-ray spectral shape** (tube voltage, anode/filter combination) on system performance

• Higher **photocounting thresholds** can be implemented when imaging **thick breasts** without compromising system performance. This might allow charge-sharing-related image noise to be reduced in some situations.

• An accurate optimization of detection thresholds requires the precise knowledge of the **spectral** distribution of **scattered** radiation (measurements or Monte-Carlo simulations)

Conclusion & future work:

• A task-dependent aspect is reintroduced in the description of system performance in mammography. This evolution is driven by technological developments in the field of semiconductor-based X-ray imagers.

• A DQE analysis at 0 lp/mm is sufficient for detection threshold optimization, but the frequency dependence is needed to compare the performance of various X-ray imaging technologies

• This extension of linear system analysis is of a more general interest in X-ray imaging than threshold optimisation:

The performance of X-ray imaging systems must be described in comparison to ideal energy-sensitive sensors operating in scatter-free conditions

Conclusion & future work:

Development of a Low-Dose Digital Mammography system at UCT/MRC Medical Imaging Research Unit, based on existing slot-scanning technology

- extended imaging theories,
- new detector technologies,
- new scanning methods.

Acknowledgements:

- Medical Research Council of South Africa
- National Research Foundation
- Lodox Systems (Pty) Ltd.

- Prof Ken Smith (University of Glasgow)
- Prof Kit Vaughan (University of Cape Town)

