Evaluation of Mixed-Signal Noise Effects in Photon Counting X-Ray Image Sensor Readout Circuits

Jan Lundgren, Suliman Abdalla, Mattias O'Nils, Bengt Oelmann

The problem of digital and analog circuits working together.

2005-07-06

Outline

- Motivation
- The error scenario
- Simulation models
- Simulation results
- Conclusions
- Future work

Motivation

Photon counting pixel detector

The error scenario

Self-generated noise within a pixel

Example of a dental X-ray image

Noise between adjacent pixels

2005-07-06

Simulation models Photon counting pixel detector

Simulation models Substrate modeling

The 3D single substrate node model with a resistive network ready for simulation.

In this case, with an epi-layer model.

2005-07-06 Jai

Simulation results Effect from one bit (20um away)

Simulation results Effect from 12 bits in 12 bit counter (20um)

Simulation results Noise from 16 bits in 16 bit counter (20um)

Conclusions

- Substrate coupling needs to be considered in future readout electronics where components are more tightly integrated.
- The problems with substrate noise coupling can be avoided with smart floorplanning.

Future work

- Implementation of remaining parts into Behavioral level Noise Coupling (BeNoC) simulation.
- Behavioral level Noise Coupling (BeNoC) evaluation of photon counting pixel detector.
- Survey and design of RFID sensor interface.

